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Local Stability and Bifurcations
in Kaldor Model”

Roman Binter’ - Lukds Vicha™

1. Introduction to Kaldor model

Nicholas Kaldor (1940) introduced one of the most interesting theories of business
cycle. It is distinguishable from most other contemporary treatments since it utilizes
non-linear functions, which produce endogenous cycles. Until Kaldor (1940) the general
economic treatment was rather linear. The problem is, that linear relations between
economic variables always lead to one steady state as two lines can never intersect in two
points. This was obviously incompatible with the empirical reality of cycles and
fluctuations. To model cycles more than one steady state is needed. Kaldor (1940)
therefore introduced nonlinear relations. In particular he assumed that investment and
saving functions will nonlinearly depend on income and capital and . Fig. 1 shows the
difference between linear and nonlinear treatment.

Fig. 1: Comparison of Nonlinear and Linear Relations
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With nonlinearity assumption on investment there can be up to three fixed points {A,
B, C}." However, whether there will be one or three fixed (equilibrium) points depends on
the slope of both functions. So even under assumption of nonlinear investment and savings
if the slope of saving function is too high there still is only one equilibrium point. Same
conclusion also holds for case with linear savings. Fig. 2 provides the intuition.
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1 These points represent economic equilibrium, i.e. points where investment equal savings.
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Fig.2: One vs. three equilibrium points in case of nonlinear investment and linear savings
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Thinking of the dynamic behavior when investment is above saving function left of A,
income increases towards A. Right of A where investment is below saving function,
income decreases towards A and vice versa, Consequently we can see that fixed point B is
unstable (income never converges to it) while points A and C are stable equilibria (income
always converge to either of them). It results that nonlinear version with three equilibrium
points leads to bistability i.e. cyclical behavior. Kaldor argued that oscillating behavior in
economy arises when we assume nonlinear investment. But this is not the only condition to
be fulfilled to reach cyclical motion. So called Speed of Adjustment must be introduced to
have complete set conditions for oscillation. The speed of adjustment represents firms’
reaction to excess demand. If the reaction to an increased demand is slow and firms are not
capable to offset the increase it may be likely that economy will never leave one of the
equilibriums. On the other hand if the reaction is rapid economy can be constantly
switching between the two equilibrium points {A, C}.

2. The Model
Let us consider the following discrete-time version of the Kaldor model,

Yr+1 :Yr +a(1r—Sr)=

Kl’+1 :(176)K1+Il’ (1)

where Y; and K; denotes the output level and the capital stock in period ¢, As
mentioned above an important parameter in the Kaldor model is the speed of adjustment
a which represents firm’s reactions to the demand excess. Parameter « is restricted to be
greater than zero. A small value of @ means slow firms’ reaction, which can be explained by
a high degree of risk aversion or a relevant monopoly degree (Bischi, 2001). In contrast,
a high value of @ means fast reactions. The parameter d (0 < § <1) measures capital stock’s
depreciation rate. Savings are proportional to the level of income,

§, =oY, 2

where ¢ (0 < o <1) denotes the propensity to save. Nonlinearity of the model arises
from the sigmoid shaped investment function,

I=ou+ - P +L[°—”—K} 3
R PR T e N Y M T =
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where the parameter p is the normal level of income exogenously assumed in firms
expectations, ou/d then denotes the normal level of capital stock. Adjustment between the
normal level of capital stock and the current capital stock K, is controlled by a coefficient y
divided by the interest rate, which is assumed exogenous. Normal level of savings is defined
as gu. A defines degree of concavity, i.e. nonlinearity of investment function,

Substituting (2) and (3) into (1) we get a two-dimensional nonlinear map T: (Y, K;) =
(Yev1 Kev 1),

( r 1
= Mia”[uexp[(—lx(x | '%}'#%_K'J_GKJ

:
{

K, =(1-0)K, +ou+ ! L Pk [—U’” K]
— _ (o) o ==
T trexplaqy, -] 2 T8

For obtaining the equilibrium points we set Y;4+;=Y; and K;4 ;= K. Then we have:

9y
-2y,

. 1 l _Lm _
4.’3}'1'1'{1+(3XI;)[(—/‘{.(Yr —#)]ZJ—I_H, 5 (Y ‘u)_ (5)

From equations (5) it is clear that we can have one or three fixed points. The unique
steady state P = (u, no/0), or P and two further steady states R = (Y, o/6Yg) Q = (Yp,
6/5Yp), located symmetrically to the steady state P (see Fig. 3). The values Yg and Yp can
be computed from Eq. (5) as the smallest real solution of the second equation.

Fig. 3: Left: One fixed point P, g = 0.257 Right: Three fixed points PQR, o = 0.057
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2.1 Local stability

The local stability of the fixed point P = (u, uo/9) is obtained through the localization
on the complex plane of the eigenvalues of the Jacobian matrix of the map T for the fixed
point P, Eq (4).

ST -
J[u,ﬂEJT 4o - J ©)

The eigenvalues of (6) are the solutions of the characteristic equation:
P(x)=x* —tr(J)x+Det(J)=0. 7

The necessary and sufficient conditions for the two roots of Eq. (7) to be inside the
unit circle of the complex plane are expressed by the system of inequalities:

P(1)=1-Tr(J)+Det(])>0,

P(-1)=1+TH(J)+Det(J)>0, (8)

P(0)=Det(J)<1.

The first condition can be formulated as

(r+1)64

ag> m, (9)

then there is the unique fixed point P = (g, uo/8), if this condition does not hold then
map T has three fixed points and the central fixed point P is not stable. The second
condition (8) becomes '

8y +r(0— 2)(ah +8)+(3— 2)(aA +8)

da(p+r(d—2)+0-2) )
The last condition of (8) can be expressed as
1
—%+6+2a(6—1)1
o>t 3 (11)
a(L+6—1J
r+1

Inequalities (9), (10), (11) define the stability region for the fixed point P. The region
ABCDE in Fig. 4 represents the stability area.
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Fig. 4: Stability region ABCDE of the steady state P in the plane of parameters. This figure
is obtained using parameters y = 0.6, d = 0.2, A = 2.5 and r = 0.05.
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Below the AB line, three equilibria exist and the situation of bi-stability arises, this is a
typical pitchfork bifurcation, Lorenz (1993). On the boundary line BC, we have Det(J) =1,
l.e. two complex roots with modulus equal to one. If the point (a, o) in Fig. 4 crosses the
boundary BC line a Hopf bifurcation occurs, Lorenz (1993).

3. Dynamic Analysis

Now that we have defined the model we proceed with analysis of dynamic properties.
To carry out the analysis we set the parameters to following values: y = 0.6,6 = 0.2,A = 2.5
and r = 0.05. ¢ and ¢ during the analysis. Their particular values will be always given for
each of the cases.

3.1. Dynamic behavior in one equilibrium case

In this section we examine dynamic behavior in one equilibrium setting. To obtain
one equilibrium framework the slope of the saving function must be o >0.162." We set it
to o = 0.25, which is surely above the critical level. We can now investigate the impact of
changes in speed of adjustment - a. Later we will explore whether the model settled in the
equilibrium point B or not.

Let’s begin with the trivial case of low a, i.e. firms’ reaction to demand increases is
slow. We set a@ =0.35 which is a point left of the BC curve™. As we see from the Fig. 5
resulting combinations of {¥, K} create tim paths’ converging to equilibrium point B.
There is clearly no cyclical behavior which means that system eigenvalues are real numbers
(A1 = 0.9604 and A3 = 0.3993). Intuition behind this is simple. As firms react slowly income
and capital evolve gradually and overshooting is absent. The different colors in the plot

2 In other words it must be in the stability region as described in the previous section.
3 Again, well inside the stability region.

4 Time path is a solution of system of two differential equations given in (1.5). They show us where the system
will end up if we choose particular initial values for Y and K.
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area separate areas of different time paths directions.” These arc obviously areas of four
different system motion directions.

Fig. 5: Trivial example of one equilibrium state
a = 0.35

As a next step we gradually increase speed of adjustment and observe consequent
changes in the system dynamics. ¢ is set to 1.45, 1.9, 2.05 and 2.45 respectively. It is
expected that the {¥, K} paths will exhibit cyclical behavior as « increases. See Fig. 6 for
the results.

Fig. 6:Y and K time paths under varying speed of adjustment
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The above pictures deliver a clear message. The higher the speed of adjustment the
stronger overshooting and consequent cyclical pattern. For all @ given above the paths
cycle around the equilibrium point B. That means that eigenvalues are complex conjugate.
In particular for ¢ = 145 the eigenvalues are: 1y =0.886161+0.29229/ and
A2 = 0.886161-0.29229i. Obviously, as 4, 2>1 the system converges. Please note the last
two pictures in the series (@ = 2.05 and « = 2.45). We witness here an emergence of the
Hopf bifurcation. We see that the system no longer converges to equilibrium B but to a
closed orbit instead. With ¢ = 2.45 this dynamic pattern is even stronger and the orbit is

5 The separation lines are called null-clines. These are lines where neither Y nor K change in time, i.e. ¥ =0,
resp. K=0.
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observed clearly. In this case, whatever the initial stock of capital and income the economy
ends up cycling around the equilibrium point.

Fig. 7: Time paths in one equilibrium setup with increasing speed of adjustment.

To complete this picture we have calculated corresponding time paths for the
particular values of ¢ Fig. 7 presents the results.

3.2. Emergeﬁce of two equilibria

So far we have worked with rather unrealistic propensity to save (o = 0.25). We will
now correct the unrealistic value. Decreasing o under a critical value will bring us to a
region of instability (see Fig. 4) and we expect to see a pitchfork bifurcation emergence, i.c.
emergence of additional two stable equilibria and loss of stability of the current
equilibrium, In Fig. 8 we saw that original equilibrium point B was attracting therefore
stable. As we decrease o to 0.191009 (still unrealistic value) B is still stable attractor.
However, as we continue to decrease o further, two new equilibria (A and C) emerge while
B looses stability ™ .

Fig. 8: Emergence of the Pitchfork Bifurcation

o = 0.19109 o = 0.16025 o=201614
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6 Note, we have used a parameter arrangement such that time path trajectories converge in an oscillating
manner, i.e. @ is rather large.

16



Roman Binter, Lukds Vicha Local Stability and Bifurcations in Kaldor Model

3.3. Two equilibria, Hopf and Homoclinic bifurcations

The Hopf and Homoclinic bifurcation can be surely regarded as the most interesting
behavioral patterns in this type of model. To observe them we will again work with ,,sub
critical“ value of propensity to save (o = 0.15). This would ensure existence of three
equilibria and we will focus on changes in . Increasing the speed of adjustment the private
sector’s reaction to changes in demand becomes very fast. Rapid reaction usually Icad to
overshooting and therefore to oscillating convergence paths. This time, however, we have
two stable equilibria. We first seta = 1.97 (top left Fig. 9). As expected the paths converge
in oscillating manner to outer equilibria A and C. Next we increase a to 2.05. The
frequency of oscillations increases. Trajectories, however still converge to the stable points
A and C. On the following picture (@ = 2.15) the trajectories oscillate even longer before
they reach their attracting points. And finally the last picture reveals completion of Hopf
bifurcation. Trajectories no longer converge to equilibrium points but to an orbit
developed around the three equilibria. Note, that no matter whether we choose initial
points from inside or outside the orbit system always converges to it. We have also
generated a figure displaying basins of attraction for the first two cases @ = 1.97 and
a = 2.05. It shows which initial points converge to point A or C.

Fig. 9: Bistability with Hopf Bifurcation and Homoclinic Orbit
a = 1.97 a = 2.05

a = 215

If we pick an initial value from the light area the system will converge to the left
equilibrium point A. If we start from a point in the dark area the system will converge to
the right equilibrium point C. The basins of attraction preserve very similar shq’pe for the
first two pictures of Fig. 10 therefore we present only one figure for both cases'.

7 Regarding the last two picture (final stages of Hopf bifurcation) it does not make sense to generate basins of
attraction for these cases as all points in the {Y,K} space eventually converge to the orbit therefore there is
no distinction between the initial values.
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Fig. 10: Basins of attraction before Hopf bifurcation.
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Finally we study emergence of Homoclinic orbit. Under our particular set up and
parameter arrangement we have located Homoclinic orbit by setting @ = 1.71 and
changing o (as usual values of o are given above plots). Other paramelter values remain
unchanged. The Fig. 11 uncovers the system behavior.

Fig. 11: Emergence of Homoclinic orbit

o = 0.19109 @ = 0.1607

Our system thus evolves from one stable equilibrium into three equilibrium situation.
Speed of adjustment of 1.71 ensures oscillating convergence of the time paths. When we
reach value of o = 0.1607 a Homoclinic orbit arises. If we choose as a starting point a point
outside the path the system will after some time converge to the orbit. However, starting
points located within the orbit do not converge to it but converge to the stable equilibria.

3. Summary

In this paper we have analyzed dynamic behavior of a modified Kaldor model. In the
usual set up dynamics of Kaldor model is analyzed with investment function given as a
simple S function such as Arcus or similar. We have decided to use different functional
form - the logistic function. In the investment function we have implemented parameter
for an interest rate. In our future work we intend to study impact of interest rate changes
on the Kaldor model. Our main task, however was to proceed with a bifurcation analysis.
Consequently we have located and described Hopf bifurcation in one equilibria
framework, Pitchfork bifurcation, Hopf in three equilibria framework and the Homoclinic
bifurcation. We also have located critical parameter values and regions in parameter
space.
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Lokalni stabilita a bifurkace v Kaldorové modelu

Roman Binter - Lukds Vdacha

Abstrakt

V tomto ¢lanku analzyujeme diskrétni verzi Kaldorova modelu. Typickym rysem
modelu je S tvar investi¢ni funkce, ktery zajistuje existenci jednoho nebo tfi rovnovaznych
stavii modelu. Z divodi pfehlednosti uvaZujeme linedrni formu tisporové funkce. Toto
zjednodudeni nemd vliv na interpretaci vysledki. Naiim cilem je studium zmén
dynamického chovani modelu v disledku zmény parametrd. Soustiedime se na pfechod
modelu ze stavu jednoho equilibria do stavu tf{ equilibrii a s tim spojené bifurkaéni
chovéni.

Klitova slova: ekonomicka dynamika; bifurkace; Kaldorv model.
Local Stability and Bifurcations in Kaldor Model

Abstract

We analyze a discrete version of a simple Kaldor model. As is typical for Kaldor
model we consider an S shaped investment function. This leads to either a one or three
equilibria of the model. For simplicity reasons we do not consider an S shape saving
function as assumed in the original Kaldor paper. This does not affect any analytical
conclusions as for presentation of dynamic properties nonlinear investment function is
sufficient. Our aim is to study changes in the model dynamics under varying parameters.
We study transition between one and two equilibria setup and also each of the set up
separately.

Key words: economic dynamics; bifurcations; Kaldor model.
JEL classification: C62, E32, E12.
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