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Abstract

Decision trees are widely used technique to describe the data. They are
also used for predictions. We may find that the same distribution can be
described by one or more decision trees. Usually, we are interested in the
simplest tree (we will call it the optimal tree).

This thesis proposes the extension to the post-pruning phase of the standard
decision tree algorithm, which allows more prunes. We will study theoreti-
cal and practical properties of this extended algorithm. In theory, we have
described a class of distributions, for which we have proven that the optimal
tree is always found by the algorithm.

In practical tests, we have studied whether this algorithm is able to recon-
struct a known tree from the data. We were interested mainly whether there
is an improvement in number of correct reconstructions at least for data
which are large enough. This fact was confirmed by a set of tests.

So we can expect that with a growing number of records in a dataset we will
achieve more true reconstructions of decision trees from data by the algo-
rithm. A similar result was recently published for Bayesian networks. Our
proposed algorithm is polynomial in the number of leaves of the tree which
is the result of the growing phase, comparing to the exponential complexity
of a trivial exhaustive search (brute force search) algorithm.

The proposed algorithm was tested on both simulated and real data and it
was compared over the traditional CART algorithm. Our algorithm achieves
better results for both real and simulated data.

The structure of PhD thesis is the following. Chapter 1 is a brief introduc-
tion to data analysis and data mining in a wider context. Chapter 2 is a
brief introduction to decision trees. Chapter 3 describes the problem solved
in more detail, goals of this thesis and the related work. Note that chapters
1 to 3 describe also the state of the art in the research area. Chapter 4 is the
core chapter of PhD thesis. It includes formal definitions, the restriction on
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the set of distributions, theorems, the algorithm itself and the proof that this
algorithm finds the optimal decision tree under certain assumptions. Chapter
5 shows the comparison of the proposed algorithm with the CART algorithm
on both simulated and real data. Finally, Chapter 6 concludes this thesis
and briefly summarizes results achieved.

Author’s original results include Chapters 4 and 5.

Key words: Decision Tree, Optimality, Smallest Decision Tree, Restructur-
ing, Algorithm.



Abstrakt

Rozhodovaci stromy jsou rozsitenou technikou pro popis dat. Pouzivaji se
casto také pro predikce. Zajimavym problémem je, ze konkrétni distribuce
muze byt popsdna jednim ¢i vice rozhodovacimi stromy. Obvykle nas zajima
co nejjednodussi rozhodovaci strom (ktery budeme nazyvat téz optimdln{
rozhodovaci strom).

Tato prace navrhuje rozsiteni prorezavaci faze algoritmu pro rozhodovaci
stromy tak, aby umoznovala vice profezavani. V préci byly zkoumany teo-
retické i praktické vlastnosti tohoto rozsiteného algoritmu. Jako hlavni teo-
reticky vysledek bylo dokazano, Zze pro jistou tfidu distribuci nalezne algo-
ritmus optimdalni rozhodovaci strom (tj. nejmensi rozhodovaci strom, ktery
reprezentuje danou distribuci). V praktickych testech bylo zkouméno, jak je
schopen algoritmus rekonstruovat znamy strom z dat. Zajimalo nés, zdali
dosdhne nase rozsiteni zlepseni v poctu spravné rekonstruovanych stromu
zejména v piipadé, ze data jsou dostatecné velkd (z hlediska poctu zdznami).
Tato domnénka byla potvrzena praktickymi testy.

Obdobny vysledek byl pred nékolika lety dokazan pro Bayesovské sité. Algo-
ritmus navrzeny v této diserta¢ni praci je polynomialni v poc¢tu listu stromu,
ktery je vystupem hladového algoritmu pro riust stromu, coz je vylepseni
oproti jednoduchému algoritmu prohledavani vSech moznych stromu, ktery
je exponencialni.

Struktura disertacni prace je nasledujici. Kapitola 1 obsahuje struény tvod
do analyzy dat a data miningu v Sirsim pojeti. Kapitola 2 je strucny tivod do
problematiky rozhodovacich stromu. Kapitola 3 popisuje problém feseny v
této disertacni praci, cile disertace a uvadi dalsi prace, které tesily obdobné
problémy.

Poznamenejme, ze kapitoly 1 az 3 popisuji zaroven stav vyzkumu v dané
oblasti. Kapitola 4 je jadrem diserta¢ni prace. Obsahuje formalni definice,
omezeni, potfebnd tvrzeni (matematické véty vcetné dukazi) a samotny



algoritmus vcetné dukazu, ze tento algoritmus za vymezenych podminek
nalezne optimalni rozhodovaci strom. Kapitola 5 srovnava navrzeny algorit-
mus se standardnim CART algoritmem na simulovanych a realnych datech.
Zaveérecna kapitola 6 shrnuje piinosy prace a struéné téz dosazené vysledky.

Vlastnim piinosem autora k této problematice jsou uvedend tvrzeni a algo-
ritmus, tedy zejména kapitoly 4 a 5.

Klicova slova: rozhodovaci strom, optimalita, nejmensi rozhodovaci strom,
zména vnitini struktury, algoritmus.



Abstrakt in Deutsch

Entscheidungsbaume sind erweiterte Technik fiir Datenbeschreibung. Sie
werden oft auch fiir Prediktionen benutzt. Das interessante Problem ist, dass
eine konkrete Distribution durch einen oder mehrere Entscheidungsbaume
beschrieben werden kann. Es interessiert uns gewohnlich den einfachsten
Entscheidungsbaum (der auch als optimaler Entscheidungsbaum genannt
wird).

Diese Arbeit schlagt Erweiterung der durchgeschnittenen Phase der Al-
gorithmen fiir Entscheidungsbaume so vor, damit sie mehr Durchschneidung
ermoglicht. In der Arbeit wurden teoretische und praktische Eigenschaften
dieses erweiterten Algorithmus gepriift. Als hauptteoretisches Ergebniss wurde
bewiesen, dass fiir bestimmte Distributionsklasse der Algorithmus den opti-
malen Entscheidungsbaum findet (das heisst den kleinsten Entscheidungs-
baum, der die entsprechende Distribution représentiert). In praktischen
Testen wurde untersucht, wie der Algorithmus fahig ist, einen bekannten
Baum von Daten zu rekonstruieren. Es hat uns interessiert, ob unsere Er-
weiterung Verbesserung der Zahl richtig rekonstruierten Baume erreicht vor
allem im Fall, dass die Daten ausreichend gross sind (aus der Sicht der
Zahl der Anmerkungen). Diese Vermutung wurde durch praktische Teste
bestatigt.

Analogisches Ergebniss wurde vor einigen Jahren fiir Bayesnetze bewiesen.
Der in dieser Disertationsarbeit vorgeschlagene Algorithmus ist polynomial
in der Zahl der Blatter des Baums, der der Ausgang des hungrigen Algo-
rithmus fiir Wachstum der Baume ist, was eine Verbesserung im Vergleich
zum einfachen Algorithmus der Durchsuchung aller méglichen Baume ist, der
exponential ist.

Diese Struktur der Disertationsarbeit ist folgendes. Das Kapitel 1 bein-
haltet kurzfassende Einfiihrung in Datenanalysis und Datenmining in breit-
erer Auffassung. Das Kapitel 2 ist kurzfassende Einfiihrung in Problematik
der Entscheidungsbaume. Das Kapitel 3 beschreibt das in der Disertation-
sarbeit geloste Problem, die Ziele der Disertation und stellt andere Arbeiten
vor, die analogische Probleme gelost haben. Bemerken wir, dass die Kapitel
1 bis 3 zugleich den Forschungszustand in gegebenem Gebiet beschreiben.
Das Kapitel 4 ist der Kern der Disertationsarbeit. Es beinhaltet formale
Definitionen, Einschrinkungen, notige Behauptungen (mathematische Satze
einschliesslich Beweise) und den eigentlichen Algorithmus einschliesslich Be-
weise, dass dieser Algorithmus unter begrenzten Bedingungen den optimalen



Entscheidungsbaum findet. Das Kapitel 5 vergleicht den vorgeschlagenen Al-
gorithmus mit Standard CART Algorithmus fiir simulierte und reale Daten.
Das letzte Kapitel 6 fasst Beitriage der Arbeit und kurz auch erreichte Ergeb-
nisse zusammen.

Der eigene Beitrag des Authors zu dieser Problematik sind eingefiihrte
Behauptungen und Algorithmus, also vor allem die Kapitel 4 und 5.

Schliisselworter: Entscheidungsbaum, Optimalitat, kleinster Entscheidungs-
baum, Innenstrukturveranderung, Algorithmus



Contents

1 Data Analysis and Data Mining
1.1 Data analysis and its purpose . . . . . .. ... ... .. ...
1.1.1 Dataanalysis . . . .. ... ... ... ... ...
1.1.2 Datasources. . . . . . ... ... ... .. ...
1.1.3 Leveraging profit from data . . . . . . .. .. ... ..
1.2 Typical Applications of the Data Analysis . . . . .. ... ..
1.3 Methodology CRISP-DM . . . . . .. .. ... .. ... ....
1.3.1 Individual tasks . . . . ... .. ...
1.4 Basic Data Analysis Tasks . . . . .. .. .. ... ... ....
1.5 Basic methods for Data Mining . . . . . .. .. .. ... ...
1.6 Types of Attributes . . . . . . . . . ... ...
1.6.1 Attribute Types for Data Analysis . . . ... ... ..
1.6.2 Conversion between attribute types . . . . . . . . . ..
1.7 Flat Table . . . . . . . .. ...

2 Introduction to Decision Trees
2.1 What is a Decision Tree Technique . . . . ... .. ... ...
2.2 Top Down Induction of Decision Trees . . . . . .. ... ...
2.3 Most Common Algorithms for Decision Trees. . . . . . .. ..

231 CART . ...
232 CHAID . ... . .
233 ID3. . ..o
234 C45 . oL

3 Optimal Tree — Problem Definition
3.1 Problem Definition . . . . ... ... ... ... ... ...,
3.2 Framework of this thesis . . . . .. .. .. ... ... .....
3.3 Results on the Tree Size and Optimality . . . ... ... ...



CONTENTS 9

4 Finding Optimal Trees 46
4.1 Definitions . . . . . . ... 47
4.1.1 Probability Distribution . . . . . ... ... ... ... 47
4.1.2 Decision Tree . . . . . . . .. . ... ... ... .... 51
4.1.3 Equivalence of Decision Trees . . . . . . .. ... ... 54
4.1.4 Optimality of Decision Trees . . . . . . . .. . .. ... 56
4.1.5 Operations with Decision Trees . . . . . ... .. ... 58
4.1.6  Faithfulness and its properties . . . . . . . . . .. ... 62
4.2  Theorems about Finding The Optimal Decision Tree . . . . . 66
4.3 Algorithm . . . . . ... ... 74
4.3.1 Algorithm overview . . . . . . . ... ... .. ... .. 74
4.3.2 Algorithm FindOptimalTree summary . . .. ... .. 78
4.3.3 Function OptimiseTree . . . . . . . . .. .. ... ... 80
4.3.4 Function JoinSucceeded . . . . . .. .. ... 82

4.3.5 Functions CanBubbleToCRPlusOne,
CanBubbleToNode . . . . . . ... ... .. ... ... 86
4.3.6 Correctness of the Algorithm . . . . . ... ... ... 86
5 Tests of Proposed Algorithm on Data 91
5.1 Reconstructing Known Tree From Data . . . . . . . . ... .. 91
5.1.1 Testdesign . . .. ... .. ... .. ... ... 93
5.1.2 Reconstruction of Full Trees . . . . . . . ... ... .. 98
5.1.3 Reconstruction of Trees which are not full . . . . . .. 101
5.1.4 Results summary . . .. . ... .. ... ... ... .. 110
5.2 Comparison On Real Data . . . . . .. .. ... ... ..... 113
6 Conclusions and Future Work 116
6.1 Results achieved . . . . . . . . .. ..o 116
6.2 Future work . . . . . . .. ... ... 117
A Notation Quick Reference 121
A.1 Tree and Graph Theory . . . . ... .. ... ... ...... 121
A.2 Decision Tree Formal Description . . . . . . .. ... .. ... 122
B Terminology 123

C Detailed results of algorithm testing 126



Chapter 1

Data Analysis and Data Mining

In this chapter, we will introduce what the data analysis is, its purpose
and its typical applications. We will focus on the data mining, which is
a set of techniques to mine knowledge from the data. Data mining has
many applications. We will focus here on applications which are typical in
business. Basic task types and major methods of the data mining will be
enumerated and briefly described in this chapter. To be more specific, we
will also introduce basic variable types and what format of data is entering
into the data analysis. This chapter is about the data analysis in general.
The chapter include topics like why we need the data analysis, where to get
the data, where the data analysis can help, and what type of data usually
goes into the data mining task.

1.1 Data analysis and its purpose

In many areas, including business and research, large amounts of data are
collected. Analyses of these data can bring new business opportunities (e.g.
discovering why our customers leaving our company, or discovering which
customers buy some particular product). These can result in the increased
profit, or the increased value of customers for the company, or the other
business goal. In the medical research, discovered results can lead into, for
example, introducing new curing methods.

10



CHAPTER 1. DATA ANALYSIS AND DATA MINING 11

1.1.1 Data analysis

In today’s world, most of business companies already analyse the data. But
some of them analyse its data only very briefly. The reason is that con-
temporary managers have their ‘best practises’, which were successful in the
past and they want to apply them to present and future. But world is be-
ing changed. The successful data analysis can lead into focusing on most
valuable customers and retaining them. The required level of data analysis
depends on competitors. When the data analysis in one company is better,
then this company can choose which customers from market they want, which
products to sell them, which campaigns are cost effective and so on. Con-
versely, when the data analysis in this company is slower than competitive’s
one, then this company is starting to lose most valuable customers. In many
cases, without the data analysis, the company is not able to recognise the
value of customers which are leaving, so this company is not able to imagine
the size of the problem.

1.1.2 Data sources

The data can be treated as a corporate asset. Many of business decisions
are supported by the data. For the data analysis, the high quality and
integrated data are required. To ensure that the data required by business
users are available, up to date and in required quality, many of companies
have started the data stewardship programme. From a view of a business
user/data analyst, following major points are required for successful results
of his or her job:

1. To know what data are available, what is the periodicity of their update.
2. The data required by analyses are available.

3. The data should have corresponding history (depends on tasks solved).
4. The data are in required quality.

5. The data are pre-processed and transformed into the form which is
suitable for analyses.

The data in companies usually resides in two places. The first one is called
legacy systems (or production systems, or transaction systems), which are
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designed to ensure company (item-level) data access and core functions (for
example, a bank has actual balances available, which have to be used when
the withdrawal is made and then the actual balance is updated). The second
place is called the data warehouse. Business users usually get data from the
data warehouse. The data warehouse integrates data from various sources
(legacy systems), cleans it and transforms it into the form required by busi-
ness users. It also reduces the load of legacy systems (the only need is in
predefined time give the information for the data warehouse). Most of anal-
yses are based on data from the data warehouse, and therefore no additional
load for legacy systems is required.

But the data warehouse is not the only source for data analysis. Typical
sources for the data analysis include also:

1. External sources.

(a) The information about Corporate Customers (from some registry,
surveys, market analyses, market monitoring, . ..)

(b) Some type of Bureau (e.g. Credit Bureau, Fraud Bureau, Previous
Medical Care Information).

(c) Competitors’ information (from web and other sources), for ex-
ample prices.

2. Other internal sources.

3. Internal analyses, estimations, predictions.

Sources may vary, depending on the quality and comprehensiveness of data
contained in the data warehouse. In some cases, data from legacy systems
are required, or data from data warehouses from the other companies in the
same business group is very useful, if legal regulations allow it.

1.1.3 Leveraging profit from data

The data warehouse is usually the best source for data analyses. In most
companies, large investments into the data warehouse were made. The data
warehouse is usually understood as a general data source for analyses. Most
of business information needed by business comes from the data warehouse.
But there is also the other side of the coin. Large investments were made
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into the data warehouse and large investments still continues, but the effect
of the data warehouse was smaller than the company had expected. There
may be many reasons of it, which includes

e Data in the data warehouse are not complete.
e Business users do not know how to find data needed for their work.
e Business users do not understand data available in the data warehouse.

e Some crucial area is missing in the data warehouse.

The data analysis is usually the way how to convert effort of building the
data warehouse into the profit. Many data analysis tasks would not be
done without the data warehouse (because the data preparation would be
very long and expensive). When launching a project of data analysis, we
should focus on the ROI (Return On Investment). For many business tasks,
we can estimate costs and benefits of the data analysis project, so we can
measure the return on investment. Usually, profits are very high and they
should be treated also as benefits of investments into the data warehouse.
The data analysis is usually very hard without the data warehouse and the
data warehouse without data analyses is usually an investment without the
leveraged profit.

1.2 Typical Applications of the Data Analy-
sis

Typical tasks solved by data analysis vary from company to company, from
industry to industry and from country to country. The level of data analysis
in a particular industry in a particular country usually depends on the level
of data analysis of company’s competitors. But there are some common
applications of the data analysis.

The first typical application is customer retention. The churn (=customers
leaving our company) is usually the big problem. When the market grows,
usually no one cares about the churn because the churn rate is low and the
customer acquisition is very large. A minor improvement in the customer
acquisition is usually much better (=bigger profit) than a churn analysis.
But one day we can found that the market became exhausted and divided to
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companies. In this situation, most of acquisitions means acquiring customers
from competitors, and vice versa. So we have to manage the churn, analyse
why our customers are leaving our company. Reducing the churn may very
affect the number of customers. In some situations there is no increase in
the number of customers when applying the churn management but it can be
evaluated that without the churn management there would be a significant
decrease in the number of customers.

The next applications of the data analysis are propensity to buy models (or
affinity models). These models try to estimate which customers are willing
to buy some product. Application of propensity to buy models is in selecting
the target group for direct marketing campaigns. The typical situation is
that the company has models for all key products. So it can say for each key
product to who is good to offer this product. The more advanced application
is that the company estimates the best product for the customer (we have
moved from the product-oriented view into the customer-oriented view) and
this is the one which the company offers him in a direct marketing campaign.
The analysis of the best product for the customer is a very advanced analysis.
It usually requires all propensity to buy models for individual products, profit
analyses for products and the other information which also comes from the
strategy of the company.

The customer segmentation is another typical application of the data analy-
sis. When we have an individual (for example a self-employed person) which
offers services to his customers, he usually knows his customers, he is able to
estimate the profit from each individual customer, he knows their preferences
and so on. So he can estimate who is likely to churn, to whom offer a new
product and other business tasks. To apply the similar task in a company
which has several millions of customers is a very hard issue. The customer
segmentation is dividing customers into groups, within these groups cus-
tomers have similar properties like behaviour, the value and preferences and
between group customers have different properties (e.g. behaviour and pref-
erences). The strategy can be established for every individual segment. We
should better focus on high value segments, ask how to convert customers
from low value segments into high value segments, to develop products for
segments and so on.

Estimating the customer value is crucial for most of business companies.
The company should focus on customers with the high value, build their
retention and loyalty. In many cases, customers with a very low value are
identified. Depending on the strategy, the company should choose from many
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alternatives what to do with them, include:

1. Reducing costs for these customers (deactivating some services, de-
creasing level of a customer care, ...).

2. Let them leave to competitors.

3. Try to increase their value.

Note that the strategy ‘Let them leave to competitors’ is very sensitive. In
the first phase, usually customers who generate a loss are leaving. When
not using supplementary advanced analyses, then in a second phase many
customers follow customers which left to competitors. When this strategy is
chosen, it should be analysed what effect will be reached on other customers.
Another typical task is a fraud detection. Many transactions may be fraudu-
lent. Fraud means the loss and the level of fraud should be very well managed.
In insurance, estimations says that 10 - 15 % of claims are fraud. In telecom-
munications, many calls are realised and interconnect fees paid to partners
(including roaming), but not billed, incorrectly billed or never paid on over-
drafted prepaids. This behaviour is classified as a fraud only in situation
that it was done intentionally, with the knowledge that the customer misuse
some bug in a company process. A fraud analysis is crucial, because it can
become very large and it can be critical for the company.

The Credit Risk is a next application of the data analysis. This problem
is solved in banks and other industry where customer pays their bills on a
postpaid base. Banks need to know the level of the risk that customer will
not repay the loan when deciding whether to accept or reject the loan for a
customer. Also, according to the Basel II (a prepared standard for calculating
requirements on own capital), they need to estimate the risk of not repaying
for loans already provided — banks need to know how much capital they need
to cover risks from not repaying loans in total. Another industries, where
the credit risk applies, include telecommunication operators, utility providers
(gas, electricity), which provides the service and the billing is done after a
specified period, and includes regular fees and fees for consumed services.
When consumption is high, the risk of not paying the bill is more critical for
the company.
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Figure 1.1: Phases of the CRISP-DM process ([4],[12]).

1.3 Methodology CRISP-DM

The abbreviation CRISP-DM stands for the CRoss-Industry Standard Pro-
cess for Data Mining. This methodology describes a complete process of
the data mining application, beginning with the business understanding and
ending with the evaluation and the deployment. This methodology can be
used as a cookbook for the data analysis or the data mining project. The
complete CRISP-DM methodology is available in [12]. We show here only a
brief introduction. The basic overview is shown in Figure 1.1.

1.3.1 Individual tasks

In the following text, we briefly describe phases of the CRISP-DM method-
ology.

Business understanding — This phase emphasises the understanding to
business and its needs. The definition of the problem and understand-
ing to business processes are crucial things to do. Only a little mis-
understanding or a neglecting of issue that we may find useless may



CHAPTER 1. DATA ANALYSIS AND DATA MINING 17

lead into delivering a solution which does not solve our problem. In a
business understanding, it is good to recognise business processes and
estimate a future use of the prepared data mining solution. The good
question in this phase is ”If we had this solution, how would we use
it?” We should also formulate an exact definition of the problem and
the planned solution in a language of business (in language, to which
business users understand).

Data understanding — In this phase, we should focus on data sources
available. In this phase, we should explore, which data sources are
available, to obtain the data, to profile the data, attributes and their
values, to identify problems with the data (quality, availability, checking
whether the data are up-to-date, periodicity of data refreshment) and
to exactly formulate the problem in the language of the data (to extend
the problem definition with specific attribute names and values).

Data preparation — Data mining methods require the data in a specified
form, called a flat table. Some algorithms for the data mining have
particular requirements on data. The data preparation includes all
tasks which ensures that the data will be available in the flat table.
The flat table and its structure will be described in a more detail in
the subsection 1.7.

Modeling — This phase contains of the application of the data mining
algorithm(s). In this phase, the knowledge is mined from the data.
Therefore, in some applications, the term data mining is used only for
the modeling phase.

Evaluation — Ensuring that results of modeling are usable for the business
application is a very crucial thing. The evaluation phase also deals
with consequences of data quality problems. This phase should find
any mistakes we could have made during all previous phases.

Deployment — In this phase, we should ensure that results of the data
mining process will help to solve our original problem. This phase
differs from task to task. For several tasks, business processes are
adjusted with respect to the results of previous phases, for other group
of tasks, deployment phase include an integration of results into current
data warehouse tables.
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Note that the data mining is an iterative process. Results achieved in one
phase may force us to return to the previous phase.

1.4 Basic Data Analysis Tasks

We can identify some basic data analysis tasks (with respect to the data
mining). These types include

1. Data Description

2. Data Exploration

3. Accepting or rejecting hypotheses
4. Classification/Prediction

5. Clustering

In the Data Description task, the goal is usually to organise and visualise
the data, maybe in a form in which the data were not displayed and this can
bring a new knowledge to the organisation. The data description task is a
typical task of the data analysis. Many of these results become to be regular
reports. The data description task has various applications, including a costs
analysis and a customer behaviour analysis.

The Data FExploration task is a task where the only goal is to find some-
thing that will help to solve some (usually given) business problem. The
data exploration is a very interesting task, but it is not so typical, because
there is no guarantee that investments into this data analysis will bring any
results/benefits. It is often used in companies with very large data analysis
activities to improve the common set of data analyses.

The accepting or rejecting hypotheses task usually starts with some hypoth-
esis (based on manager’s intuition) and tries to find a suitable data which
can say whether the hypothesis is correct or not. This task has various
applications in most of major business activities in a company.
Classification and prediction tasks usually estimate some value for each record
(customer, claim). The definition of the record depends on a business task
solved. The classification estimates a current value, the prediction estimates
a future value. The prediction task needs some time shifts and evaluation
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may take longer time. Typical applications include the churn prediction, the
propensity to buy prediction, the credit scoring and the fraud classification.
The clustering task aggregates records (customers, ... ) into groups, there are
records with similar properties within groups, and the properties of records
are different between groups. Typical applications include the customer be-
haviour segmentation, the customer value segmentation and segmentations
affiliated to a prediction model (classifying reasons for the predicted be-
haviour).

1.5 Basic methods for Data Mining

The data mining is a collection of various methods. For a particular business
task, an individual preparation and method selection should be done. There
is no strict rule which method should be used in a particular situation. The
origin of individual methods is very different. Data mining methods have
taken methods from statistics, machine learning and artificial intelligence.
In following paragraphs, we will describe some common methods.

The first method we mention here is a decision tree induction. It has been
chosen as the first method intentionally — decision trees are what is this work
about. Here we provide only a brief description. Decision trees will be de-
scribed in a more detail later. The decision tree induction is a method based
on two principles. The first principle is called divide et impera (i.e. divide
and conquer). This means, that in every step, the dataset is split into two
or more parts and the algorithm continues recursively on individual parts.
The second principle is a greedy principle. That means that the splitting is
based only on little information (the best local decision). Decision trees are
used mainly for predictions, classifications and descriptions (the data visu-
alisation). The decision tree is a classifier with a very high capacity. The
capacity means how much information from the data (e.g. number of param-
eters) can this classifier store; the capacity is also called the VC Dimension,
or the Vapnik-Chervonenkis Dimension (]9],[31]). For a given capacity and
the test set size, we are able to estimate the error on the test set ([33]). So
the decision tree can represent perfectly any distribution. But, in real appli-
cations, decision trees may tend to overfitting. There are some techniques
in decision trees which prevents overfitting, for example pruning. Decision
trees are also often used in pre-processing phase for a logistic regression (see
later). Decision trees with a logistic regression are major techniques used for
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prediction and classification tasks.

The logistic regression ([1],[23]) is a method which comes from the statistics,
but it is often used in data mining applications. The main purpose of this
method is to predict (to classify) a binary (categorical) variable. The logistic
regression has smaller capacity than decision trees. For real applications, the
risk of overfitting is not so high, but the logistic regression is not able to
fit some distributions (the most of them). For example the zor distribution
can be never fitted. This problem can be avoided using interactions (derived
attributes, combination of attributes), a selection of interactions used can be
done using a manual application of decision trees. The logistic regression has
a very wide range of applications. The most of credit-scoring systems are
based on a logistic regression.

The support vector machine (SVM; [15]) is a relatively new method for the
prediction and the classification. This method is suitable in a situation where
one target class has only a very small number of records. The capacity of the
SVM is a very small, i.e. the SVM can represent only a very small number
of distributions. But it is the only method which is able to handle even a
very small data. Currently, the SVM is not implemented in a most of leading
statistical software packages.

The K-nearest neighbours is an another classification method. This method
is based on the principle ”When I do not know, I will look to the historical
data to k£ most similar cases and their results and based on these results, 1
will estimate the result for the new record”. This method is very simple, but
in general, this method is not used so often.

The perceptron, or a three layer predictive neural network, is another method,
which can be used for the prediction. Neural networks were popular in 80’s.
Today’s world uses neural networks less than other prediction methods, al-
though they have a similar prediction quality as decision trees or the logistic
regression. The reason is that the neural network is a black box.

The most common clustering method is the K-means clustering. This is a
distance-based clustering method, i.e. the distance measure between records
is defined. The K-means clustering is an iterative method, where the num-
ber of clusters must be specified. The K-means clustering is a widely used
method in a situation, where we have only a few attributes (less than 10)
and all attributes are important in all cluster profiles. Applications of the K-
means clustering include a demographical segmentation and supplementary
segmentations for prediction models.

A special kind of neural networks is the Kohonen neural network, also known
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as the Kohonen self organising map. This is a distance-based method, but
it can handle a bigger number of attributes than the K-means do. Also, the
number of final clusters is estimated from the data and final clusters do not
need to be defined by spherical regions only (a cluster is defined as an union
of spheres).

The next clustering method is called the EM clustering, or the model based
clustering. This method is based on the probability and it can handle more
attributes. The profile of each cluster is determined only by attributes which
are different from population means, two clusters may have different at-
tributes in their definitions. This method needs to have the data very well
prepared. The EM clustering is not implemented in the most of major data
mining packages. Applications of the EM clustering include the corporate
customer segmentation and the supplementary segmentation for prediction
models.

The association rule analysis is another data mining method. For a given
data, co-occurring items or items matching predefined pattern (in case of
the general rule induction) are found. The data exploration is one of typical
applications of association rules. Business applications include the market
basket analysis and the web tracking analysis.

The discriminant analysis is a statistical method. This method was often
used for a classification, but nowadays it becomes popular as a supplementary
tool for the clustering (segmentation). The typical application is using it as
a tool which helps to visualise the clustering.

1.6 Types of Attributes

In many database engines, attribute types are numeric, character (fixed or
variable length), binary, large binary, picture and others. For the data anal-
ysis, other classes of attributes are used. We will describe these classes and
their properties.

1.6.1 Attribute Types for Data Analysis

The first type of attributes used in data analyses is a binary attribute. This
attribute can have only two values. It can be coded in a numeric or a char-
acter variable. Without loss of generality, we may assume that the attribute
is numeric and it has values 0 and 1.
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The next type is a categorical attribute, also known as a discrete attribute.
The value of this attribute can be one of the limited number of values. Usu-
ally, there is only a small number of possible values. The binary attribute
is a special type of a categorical attribute, which can have only one of two
values.

The special subtype of categorical attributes is an ordinal attribute. Values
of this attribute type can be also only from a limited list, but values are
ordered. We can compare two values and we can say what is more and what
is less.

The last major type of attribute is a continuous attribute. This attribute is
similar to a real number in a computer. Many attributes with numeric values,
but a large possible number of these values, are treated as continuous.

1.6.2 Conversion between attribute types
Discretization

The most common conversion is the conversion from the continuous attribute
to a discrete attribute. This conversion is called the discretization. Many
algorithms are not able to handle with continuous variables, so the discretiza-
tion is needed. In several cases, the discretization is used instead of a large
amount of steps in the data preparation, including the outlier handling, the
variable transformation, the variable analysis and adjusting.

Assume that we have the data about accounts in a bank and we are inter-
ested in a continuous variable actual balance. This variable has a strongly
asymmetric distribution of values and many outliers (for many data mining
methods, values which are very far from other values have to be handled,
otherwise they spoil the entire analysis). The basic idea of the discretiza-
tion is to handle big differences in values. We usually do not care whether
client’s balance is $1,234.50 or $1,237.30, but the difference between $1.28
and $10,354,583.94 is significant for us. So we split the range of possible
values in smaller intervals (as shown in the example in Table 1.1) and we say
that client’s balance is for example low or very high.

The discretization can be set by the expert (or boundaries which respect to
some division which is commonly used) or can be set automatically. The
most common attitude is to use equifrequent bins. This means that we set
the required number of bins (categories) and boundaries are set automatically
using the following way: in every bin there is the same (or very similar)
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Table 1.1: Example of discretization, account balance, retail

Balance range Balance level
less than $0.00 overdrawn
$0.00 — $29.99 very low
$30.00 — $999.99 low

$1,000.00 — $2,999.99 | lower medium
$3,000.00 — $7,999.99 | upper medium
$8,000.00 — $19,999.99 high
$20,000.00 and more very high

number of records. There are usually 10 bins used, because 10 bins is enough
to see large differences in values and 10 bins can be easily handled by the
human’s brain and visualised.

There are some other attitudes to the discretization. One of them is to set
intervals in a way that every interval has the same range (the difference
between lower and upper bound). The other attitude is to use percentile-
based division, for example in a schema 10-25-50-75-90. This means that the
lowest 10 percent of values goes to the lowest bin, the next 15 percent of
values goes to the second bin (and cumulatively there is 25 percent of values
in first two bins) and so on.

The discretization is commonly used method. It clears small differences,
handles outliers and may handle missing values in one step (by introducing
special bin ”"missing”). The next purpose is for algorithms which require
discrete variables only (with the small number of possible values) and we
have continuous ones which we want to use. But the discretization has also
disadvantages. For example, two almost similar values can be put into differ-
ent bins if the boundary fits between them. The main disadvantage is that
boundaries are artificial — we introduce into variable properties our bound-
aries, after discretization, we treat all records into one bin as a same and
records from different bins as different, no matter the original distance (only
very different values are expected to be in different bins).

Note that we may construct a discretization with respect to the classification
(the prediction accuracy). The example of such discretization is to find a
cutpoint ¢ for a continuous variable X in order to find a binary variable
(outcome is 0 for X < ¢ and 1 elsewhere). The discretization may be global
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(i.e. one discretization is made and then the algorithm is executed) or local
(i.e. for "divide and impera” algoritms, in every step, ad hoc discretization
is made).

In spite of some minor disadvantages, discretization is widely used technique
which usually improves the quality of the data analysis.

Dummy variables

The next transformation, which is often used, is the transformation of cat-
egorical variables into a set of binary variables (see Table 1.2). This step is
needed when the algorithm is able to work with binary or binary and con-
tinuous variables only. Treating a categorical variable as a continuous one
is an error. The error become more critical when the categorical variable is
not ordinal. For example, assume the coding in Table 1.2, when treating the
original variable as continuous, then we should interpret results as "red is
average between blue and green”. For this reason, we should avoid treating
the categorical variable as a continuous one in general.

Table 1.2: Example of dummy variables

Original Variable || New Dummy Variables
Value | Description || Iyue | Ireq Tgreen
1 Blue 1 0 0
2 Red 0 1 0
3 Green 0 0 1

1.7 Flat Table

The Flat Table is one of many terms used for a table which is an input for
data mining algorithms. Algorithms for the data mining are designed to work
with a flat table. Usually, the data have to be collected from various sources,
and then transformed into this flat table. The flat table is a set of records (or
observations respectively). For every record, we have many attributes which
belongs to this record. The granularity of this record is determined by the
business problem actually solved. When we are interested in the customer
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churn, then one customer is one record and one attribute is the churn (this
attribute is 1 when the customer churns and 0 otherwise). In insurance fraud,
one record is one claim. For claims in the past, we have the variable fraud
which says whether the fraud was confirmed. Note that the fraud task is
biased because not all claims were investigated. In the credit scoring, one
record is either one application for loan for the application credit scoring, or
one customer for the behavioural credit scoring. Note that the credit scoring
is also a biased analysis (many applications were rejected).

In Table 1.3, there is an example of the flat table used for the data analysis
in mobile telecommunications. This table is intended for use in many CRM
(customer relationship management) applications (for example the churn pre-
diction, the propensity to buy (PTB) model for MMS — multimedia message
system). The grain of the table (= one record) is one SIM card. For every
SIM card, we collect many of attributes. Some sample attributes are shown
in our example.
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Chapter 2

Introduction to Decision Trees

2.1 What is a Decision Tree Technique

The decision tree induction is a widely used technique for data analysis. We
can identify several reasons for this. First, decision trees can be easily visu-
alised. Second, it is easy to understand the visualised decision tree (model).
Decision trees can be the way how can the data miner communicate with
business users (including managers) also with a low level of knowledge in
statistics. Due to these reasons, decision trees became popular even in man-
agement. With a well-prepared data and a short training, managers can use
the interactive learning of decision trees (in some software implementations)
as well as browsing OLAP (Online Analytical Processing) cubes. Both tech-
niques (OLAP browsing and decision trees interactive growing) are very easy
to use for business users. The result from this managerial browsing is usually
the knowledge, which can be used for his/her decisions.

Decision tree induction assumes that one variable is target (for prediction,
this variable concerns the future value, which is unknown in the time of the
decision) and other variables are input variables, or predictors. For known
values of predictors, we are able to estimate the value of the target variable.
When using decision trees, we can distinguish between two phases. In the
first phase, the decision tree is learned from a historical data. Learning can
be interactive or automatic. The result of the first phase is a decision tree.
In the second phase, the decision tree is used. It can be used as knowledge
(manager makes a decision with a knowledge of a decision tree) or as a
predictive or a classification model (we estimate the future value of a target

27
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variable or a class for known values of predictors).

Decision trees can handle both categorical and continuous variables. Avail-
ability of use of particular variable types strongly depends on the algorithm
which we want to use. Most of common decision tree algorithms can now
handle both categorical and continuous variable types. We have to strictly
distinguish whether a target variable is a discrete or a continuous one. The
type of a target variable usually influences a visualisation and the criterion
which is used inside the algorithm. We will restrict a following text to a dis-
crete (or binary respectively) target variable. The type of a source variable is
handled in a much easier way. Usually, for a continuous predictor, the cutoff
value is searched. The cutoff value is the value which is a boundary for two
groups. In the first group, observations with the predictor lower than the
cutoff value are included and in the second one, observations with the pre-
dictor greater than or equal to the cutoff value are included. Search for the
cutoff value can be done ad-hoc for every individual group inside the greedy
principle (local cutoff), or globally before the growing algorithm starts (the
global cutoff value, or it can be also called a discretization).

We may assume the following situation in telecommunications. We are trying
to predict who is willing to buy an unlimited GPRS data service. Following
variables (attributes) were selected for this example (a real data for model
learning should contain much much more variables):

’ Attribute Name ‘ Description ‘
Sp35 Spend over $35 in last month
Sex Male/Female
GPRS6M GPRS service was used in last 6 months
BehSegm The segment of the customer in the cor-

porate behavioural segmentation
PTBUnlimitedData (target) | The customer is willing to buy GPRS un-
limited

In the figure 2.1, we can see a Decision Tree built on a sample of 10,000
records from a customer data file.
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Yes=2.0%
N=10,000
1,2,8,17 Other
| BehSegm |
Yes=4.0% Yes=0.7%
N=3,940 N=6,060
Yes | No Male | Female
|  GPRS6M | | Sex |
Yes=5.8% Yes=3.1% Yes=1.4% Yes=0.3%
N=1,328 N=2,612 N=2,165 N=3,895
Yes | No
| Sp35 |
Yes=7.0% Yes=0.2%
N=1,114 N=1,498

Figure 2.1: The example of a decision tree which may be used in telecom-
munications. Propensity to buy (PTB) model for the GPRS data unlimited
service. A PTBUnlimitedData variable is a target variable.

2.2 Top Down Induction of Decision Trees

The Top Down Induction of Decision Trees (abbreviation TDIDT [26]) is a
framework for growing the decision tree. It reflects the idea of learning deci-
sion trees based on the principle Divide et Impera (”Divide and Conquer”).
The basic idea of this principle is the same at any level (at the beginning,
for all records).

e For every variable A;

— split all given records into two or more groups (it depends on a
variable type and the algorithm used), defined by values of variable
A; (e.g. group one is a group of records that satisfies A; = 0 and
group two are remaining records)

— compute the measure of goodness for this split (how much it im-
proves the estimation of the target variable)

e choose the variable with the highest measure of goodness and its split
and split given records into groups
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For every resulting group, repeat the same principle. Further splits of each
resulting group do not depend on other groups and their records.

Splits are done until some stopping criterion is reached. When the stopping
criterion is reached, this group will not be split anymore. This does not affect
the algorithm processing in other groups. The stopping criterion may be one
of the following list.

e The group is pure, i.e. all given records have only one value of the
target variable.

e The group is too small, i.e. contains only a small number of records.

e Resulting groups would be too small, i.e. every reasonable split leads
into groups where one of groups is very small (or one of groups contains
almost all given records).

e No variable for the reasonable split is found (no variable is significant
for the split).

[tems two and three are stopping rules which are also called pre-pruning. It
usually helps to prevent an overfitting (i.e. the classification is good at the
data, from which was the decision tree trained, but is a very poor at the
other set; the reason is that the method is able to distinguish the behaviour
of every single record in the file, including randomness, not focusing on gen-
eral properties). For some algorithms, the pre-pruning is not used (items 1
and 4 of the previous list are used always — no reasonable split means always
stop growing this branch; item 1 is sometimes also treated as 'no variable for
reasonable split is found’). Instead of the pre-pruning, the tree is grown to
the maximum detail (usually overfitted) and the second phase, post-pruning
(or also simply pruning) is applied. This step tries to combine two neigh-
bouring leaves (groups) and using the statistical criterion which evaluates
whether merging will affect a quality of the decision tree or not. This step is
repeated until no two leaves can be combined without the loss of the quality.

The TDIDT framework uses a greedy principle (i.e. the splitting variable is
chosen by a measure of goodness and it is never changed later). It is searching
a local optimum and hoping that we find also the global maximum. In some
cases, the optimal tree (the smallest tree which represents the data) can be
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missed. Also, in some cases, a tree growing is stopped prematurely. A typical
example is a xor-based distribution. Assume following records in a flat table:

Target variable | Predictor A | Predictor B | Count of records
0 0 0 5,000
1 0 1 5,000
1 1 0 5,000
0 1 1 5,000

In the entire dataset, 20,000 records is available and a probability of target=1
is 50%. When trying to split by A or B, in both cases we would obtain
two groups with 10,000 records and a probability of target=1 is 50% in
both groups, so the split (either by A or by B) is evaluated as useless and
then the learning is stopped. But the correct optimal tree has a division
by one predictor (without loss of generality it is the Predictor A) and both
groups have division by a second predictor (without loss of generality it is the
Predictor B). This problem was researched in [22]. This work also introduces
a new algorithm based on ’look-ahead principle” — the algorithm tries to look
not only at potential groups, but also at next levels (how good would be
split in next turns when in this turn A will be chosen as a splitting variable).
This principle increases a complexity, but the resulting tree may be better.
This principle did not become available in today’s software packages which
provide decision tree technique. The greedy principle is a widely accepted
standard for growing decision trees. But to achieve any theoretical results,
we have to know that, in some cases, a greedy learning of decision trees can
stop prematurely.

2.3 Most Common Algorithms for Decision
Trees

There are many algorithms for growing decision trees. Most common al-
gorithms for decision trees will be shown here. These algorithms can be
categorised into groups ([5],[8]).

CART algorithm can be categorised in a group called Statistical Decision
Trees, or CART family
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CHAID algorithm is a representative of decision tree techniques which came
from Pattern Recognition, or the group of algorithms called also the
AID family. Many other -AID algorithms (THAID, ...) were devel-

oped ([8]).

ID3 is the algorithm based on the information theory, entropy, this class is
also called the machine learning family. Most popular software exten-
sions include C4.5 and C5.0.

Brief examples of these algorithms will share the same example data taken
from [26]. These examples assume a greedy principle and show how to cal-
culate a measure of goodness, which is different for each algorithm shown.
The example data follows.

Play tennis? dataset

Outlook | Temp. | Humidity | Wind | Play tennis?
sunny hot high Weak no
sunny hot high Strong no

overcast | hot high Weak yes

rain mild high Weak yes
rain cool normal | Weak yes
rain cool normal | Strong no
overcast | cool normal | Strong yes
sunny mild high Weak no
sunny cool normal | Weak yes
rain mild normal | Weak yes
sunny mild normal | Strong yes
overcast | mild high Strong yes
overcast | hot normal Weak yes
rain mild high Strong no

For all these algorithms, the Outlook variable is chosen for the root. In
general, for the same data, different variables can be chosen for the split by
individual algorithms.
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2.3.1 CART

The CART algorithm was developed by Breiman et al [2] in 1984. The
CART is an abbreviation which stands for Classification And Regression
Trees. These two types of trees have one difference — classification trees
assume a discrete target variable. Conversely, regression trees assume a con-
tinuous target variable. We will focus on classification trees only.

When a split variable is being chosen, all possible variables are tested for a
criterion and the best one is selected.

CART trees assume binary splits only. When the predictor is

binary variable, each value defines one group for a split,

discrete variable, all possible combinations of groups are assumed (for n
value discrete variable, (2" — 2)/2 subsets are tested),

continuous variable, all possible cut points are tested (for n records, at
most n — 1 cut points are tested).

CART uses as a split selection criterion 'weighted average impurity’, which
is based on GINI index. So at first, GINI indices are computed and then
combined into the criterion. We show here computation of the GINI index
for two groups from a possible binary split only (we assume binary variable,
otherwise see predictor types and handling with them which is a few lines
above). First, for each group (a possible node), the GINI index defined as
1 — >"p?, where p; is a proportion of a target category (e.g. i={Yes,No}),

is corilputed. Next, the GINI index for a variable splitting is computed as a
weighted average of GINI indices for each group. Note that the best value
for splitting is the minimal value of GINI index. So we may say that the
measure of goodness is a negative value of the GINI index.

The example of the GINI index computation for Play tennis? data is shown
in following tables. First, we decide how to split three possible values of
Outlook into subgroups.

Grouping 1 Grouping 2 Grouping 3
Play Sunny Overcast Sunny + | Rain Sunny Rain +
tennis? + Rain Overcast Overcast
Yes 5 4 6 3 2 7
No 5 0 3 2 3 2
GINI for group 0.5 0 0.44 0.48 0.48 0.35
GINT for variable 0.36 0.46 0.39
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The best division into subsets is the Grouping 1.
computed for the Temperature.
subsets is Hot + Cool in one group and Mild in the other group.

Now, we will compute GINI indices for all variables (and a best division into

subsets). Results are shown in a following table.

A similar test can be
The result is that the best division into

Outlook Temperature Humidity ‘Wind
Play Sunny | Overcast || Hot + | Mild || High | Normal || Weak | Strong
tennis? + Rain Cool
Yes 5 4 5 4 3 6 3
No 5 0 3 2 4 1 2 3
GINI for group 0.5 0 0.47 0.44 0.49 0.25 0.38 0.5
GINI for variable 0.36 0.46 0.37 0.43

The best value of the GINI index has the Outlook variable, so it will appear in
a split on the root level. Next, the group defined as Outlook=Sunny or Rain
with 10 records will be split using the same algorithm, and the second group
defined as Outlook=Qvercast will be also split using the same algorithm until
the stopping criterion 'no variable for reasonable split is found’ is reached.
The CART algorithm usually does not use a pre-pruning, it uses a post-
pruning.

2.3.2 CHAID

The CHAID abbreviation stands for the Chi-square Automatic Interaction
Detection. This algorithm ([17]) can handle nominal, ordinal and continuous
variables. We will restrict here to a binary target and nominal predictors.
The CHAID uses the TDIDT schema (framework), the split is chosen by the
best value of a measure of goodness for each variable. This measure is based
on the statistical test, the p-value (significance level) is computed for the
result. This measure is calculated for every variable as follows.

e When a nominal variable has more than two values, try to combine
some values.

— Find the pair of categories, which is least significant (i.e. largest
p-value) with respect to the target variable.
— Repeat the previous step until no pair is statistically insignificant

to combine (until p < Qeompine for all pairs).

e Compute a chi-square statistics and a p-value for this variable vs. tar-
get.
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e Adjust the resulting p-value with the Bonferroni’s adjustment.

The p-value criterion may prefer more categories. So it is used the Bonfer-
roni’s adjustment. This is a correction for a p-value. For a binary target
and a k-ary predictor, the adjusted p-value (denoted as « in expressions) is
computed as aqq = o - @

The chi-square statistics is computed by a general schema for independence
of two categorical variables

observed — expected)?
eyt L

expected

For the fourfold table with variables A = {ag,a;} and B = {by, b}, the
expected probability of A = a;, B = b, is given by P(A = a;) - P(B = b;)
(note that P(A = a;) and P(B = b;) are computed as marginal relative
frequencies from the fourfold table).

Resulting x? is then converted to the p-value and it is adjusted. For this
example, we will compute the p-value for the attribute Humidity. First, we
will look at the data

Humidity
Play tennis? | High Normal | Any
Yes 3 6 9
No 4 1 )
7 7 14

Now, we will compute

(-3 (6-%7 (-7 (-3

V2= yM I yM I ﬂm I ;714 _
14 14 14 14
(—1.5)2 1.5 152 (—1.5) 45
4.5 * 4.5 * 2.5 + 2.5 * 2.5

From x? = 2.8, we may compute

the p-value a = 0.0943. The Bonferroni adjustment does not change the
p-value for this case (we have 2 values of a predictor only). We may continue
to compute the p-value for other variables. Note that for 3-ary variables, we
should apply "merging categories”.

CHAID trees usually use pre-pruning, also called as stopping criteria. That
means, that the growing is stopped when given criteria is met (at least one
criterion is met). These criteria usually include
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e the node is pure (i.e. only one target category is in a node),
e the minimal number of records in the node to allow next splitting,

e the minimal number of records in newly created leaves (this disqualify
some potential splits) and

e the maximum tree depth is reached.

This algorithm has also an alternative approach called the Exhaustive CHAID.
In some cases, the CHAID may not find the optimal category merging (it
may stop merging of categories prematurely). So the Exhaustive CHAID
algorithm continues until 2 categories are left. Then, it looks at all steps of
merging and chooses the best grouping, based on adjusted p-values.

2.3.3 1ID3

The algorithm ID3 ([26]) is an entropy-based algorithm. This algorithm uses
also the TDIDT schema (framework), the split criterion is designed to prefer
an increase in the purity of leaves. This criterion is based on the information
theory and the maximum information gain is preferred. The information
gain for a variable A is defined as

Gain(A) = I(p) — E(A),

where E(A) =3 " I(p;) and I(p) = —plogp — (1 —p)log(1 —p). Note that

the logarithm islthe base 2 logarithm.

Now, we can calculate the information gain for our example ”Play tennis”.
We will try to compute the information gain for a variable Humidity. First,
we will look at a following table, which will help us.

Humidity
Play tennis? | High Normal | Any
Yes 3 6 9
No 4 1 5

Information Gain for Humidity is

Gain( Humidity) = 1)~ E(Humidity) = (=)~ (1 1(2)+ 23 1(2)) =
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9 1 3 1 6 1 1
=I(—)—=-I(z)—=-1(2) =0.940 — = - 0.985 — = - 0.592 = 0.152.
(14) 5 (7) 5 (7) 0.940 5 0.985 5 0.592 = 0.15
In similar way we may compute the information gain for all attributes. The

results are shown in a following table.

Attribute Information Gain
Humidity 0.152
Wind 0.048
Outlook 0.25
Temperature 0.03

We will choose the attribute with the highest information gain in the split,
so Outlook will be selected.

The algorithm continues in a similar way until pure leaves are achieved. To
prevent overfitting, post-pruning methods are used.

234 C4.5

The C4.5 algorithm [25] is a software extension of the ID3 algorithm. This
algorithm was developed by Quinlan. The most current version of this soft-
ware extension is C5.0, which has many advantages in comparison with C4.5,
but it is commercial software so the availability and possibility to use is very
reduced. Advantages are in details (minor details in criteria, for example an
adjustment for continuous variables), but the principle remains the same.
(C4.5 can use one of two criteria. The first one is the information gain shown
in previous section. The second one is also an entropy-based criterion, which
is based on the information gain. It was observed that information gain itself
prefers attributes with a very high cardinality (with a very high number of
possible values). The best variable for split is a variable, which is unique for
each record, so only one record would appear in every category (leaf). So
C4.5 calculates also the potential information from every partition (maximum
possible information) and compares it with the actual information. The
potential split information (SI) is defined as follows

1 %
SI(A) = — Z —log(~1).
The gain ratio G is then defined as
GR(A) = Gain(A)/SI(A).
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So the gain ratio is calculated for every variable and the variable with the
highest gain ratio is selected fo a split. We may calculate SI(A) for each
variable. The only inputs for S7(A) are group sizes in division by variable A.
We will show the example of ST for the variable wind. We have two classes
of the variable wind — weak and strong. The number of records for weak
wind is 8, the number of records for a strong wind is 6. So

8 8 6 6
I(wind) = ——log(—) — — log(—) = 0.
SI(wind) 1 og(M) 1 og(—) =0.985
We may compute the Split information for other variables in a similar way.
The following table shows the Gain, the Split information and the Gain Ratio
for every variable. Note that the Gain is taken from the previous section.

Variable Class sizes | Gain | Split information | Gain ratio
Humidity 7,7 0.152 1 0.152
Wind 8,6 0.048 0.985 0.049
Outlook 9,4.5 0.25 1.577 0.156
Temperature 4,6,4 0.03 1.362 0.021

So the variable Outlook is also selected. In general, the variable for the split
may be different for the Gain criterion (for the ID3) and for the Gain ratio
criterion (C4.5).



Chapter 3

Optimal Tree — Problem
Definition

3.1 Problem Definition

Algorihm based on decision tree induction use in the growing phase a greedy
principle. This is a very good method when we know that to find a deci-
sion tree which represents the distribution is a NP-complete task ([10],[11]).
When learning decision trees, the focus is usually on the prediction accuracy.
The pruning phase of decision tree induction algorithms is used to prevent
overfitting.

Our approach in this thesis requires the best possible prediction accuracy,
but also the smallest possible tree which achieves this best accuracy. We
may find groups of decision trees that every tree within every group gives
the same information. That means that every decision tree from this group
gives the same classification on every input dataset. We will call these trees
classificationally equivalent. We will try to improve the post-pruning phase
to allow more prunes in order to get the smaller tree. Next, we will examine
our improvement to post-pruning whether it is possible to find the optimal
tree for a distribution — the smallest tree which is classificationally equivalent
to any tree which represents the given distribution.

That means we will not give up the prediction accuracy requirement, we will
only add the simplicity of the tree as a secondary requirement. Let us trust
that in many cases decision trees resulting from the greedy algorithm (with
post-pruning respectively) can be optimised. It will also help to understand
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the true structure of the data by users (it helps to a business understanding
in a language of the CRISP-DM). Moreover, making the tree simpler reduces
overfitting.

Assume the following situation. We will try to predict a success at the
exam for pupils. For boys, a success depends on knowledge and for girls, a
success depends on a diligence. Moreover, the knowledge and the diligence
are strongly correlated. The decision tree for this distribution is shown in
Figure 3.1 on the left.

02 03 02 07 08 03 0.8 0.7

Figure 3.1: Two decision trees with the same classification on every data set
and a different number of leaves. The target variable is a pass/fail mark at
the exam (pass=1, fail=0). A probability is a proportion of the pass mark.
D=Very Diligent, K=High Knowledge, B/G=Boy/Girl

Our original situation can be described by the optimal tree with 4 leaves (in
Figure 3.1 on the left), the greedy algorithm chooses the diligence for the
root, where the boy/girl split is in a deeper level and pruning is not able to
propagate it to the root.

The basic idea of the proposed algorithm is that it will transform the tree
grown by some standard greedy algorithm to the smaller one (ideally to
the optimal one). The complexity of the proposed algorithm should not be
exponential in the number of leaves of the tree resulting from the greedy
phase (this occurs when a trivial exhaustive search is used).
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3.2 Framework of this thesis

This research was inspired by results achieved in bayesian networks few years
ago ([13],[14]). These works have restricted the set of available distributions
and proved theorems about finding optimal bayesian networks. Our work
should be similar in this way (it will use the same idea for decision trees)
— to restrict reasonably the set of distribution and to provide an algorithm
which finds the optimal decision tree for any distribution from our restricted
set (and finding the optimal tree should be proved theoretically for a distri-
bution).

Our goal was to find a smaller tree using some improvements into post-
pruning phase and to examine whether it can find an optimal tree for a
distribution under some reasonable assumptions. This means to find the
combination of a restriction/set of operations such that applying this restric-
tion (some restriction is needed due to the NP-completeness of the original
problem), there exists a sequence of operations which converts a tree from
the greedy phase to the optimal one.

Next task was to find an algorithm which finds this sequence for a distribution
in the time which is better than exponential (in the number of leaves of the
tree which is the result of the growing phase). At the beginning, it was not
sure whether original restrictions and the set of operations will be sufficient
for the (constructive) algorithm, but it is shown that proposed assumptions
are sufficient.

Author’s original work (chapters 4 and 5) include

e introducing some improvements into the post-pruning phase to allow
more prunes,

e examining whether this algorithm can find the optimal tree for a dis-
tribution (and under which assumptions), this include

— providing theorems on finding decision trees (which can help to
develop an algorithm) and proving them,

— providing an algorithm to find the optimal decision tree and prov-
ing its properties for a distribution,

e testing the proposed algorithm on both simulated and real data and
comparing the results with the standard decision tree algorithm (the

CART algorithm).
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To achieve any reasonable theoretical results, due to NP completeness of
the problem solved in general, there was defined a restriction for the set of
available distributions, which have helped to develop a polynomial algorithm.
This work is restricted to binary variables only. Other variables can be eas-
ily transformed to binary ones. When we have a categorical predictor with
more than two values, (e.g. Colour={Blue, Yellow, Green}), we may convert
it into several binary attributes (i.e. Ipue, Iyeiiow; Igreen))- This approach
was described in the subsection 1.6.2. For a continuous variable X, we may
find the cutpoint ¢ and define one binary variable Ixy = 1if X < cand Ix =0
otherwise.

Our approach will be a little bit different in comparison with standard deci-
sion tree algorithms. We implicitly assume that leaves might be impure. So
we expect that for a given set of predictors and their values, both values of a
target variable are allowed, with the given proportion (of probability that a
target variable has a value ”1”). When describing some non-deterministic be-
haviour, like customer churn, propensity to buy, but also fraud etc., we may
have different values of the target variable for the same set of predictors. The
reason is that we will never have all attributes which influences the behaviour
which we predict. For example, customer feelings, behavioural standards and
many attributes that we will never have available may influence churn, fraud
etc.

We will say that the decision tree represents a distribution (even for the
distribution), we do not require the data to represent strict fixed rules (like
"for 100% of cases from this group, the target variable is 17). It will be very
helpful for both theoretical and practical results.

Now, we look at our approach in a more detail. We will do several things
concurrently — we will introduce some operations into the post-pruning phase,
we will try to examine their properties and ”common power” and we will try
to prove theorems for a distribution whether the optimal tree can be found
using these operations.

There was tested several post-pruning operations and their combinations. As
a result, it was shown that (under some restrictions) the only one operation
is sufficient. For these purposes, some restrictions of the set of distributions
were made. This allowed us to formulate and to prove theorems, to establish
the algorithm and to prove its properties. The last phase, testing the algo-
rithm on the simulated data will be proceeded on all distributions (not only
distributions from our restricted set).
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Our algorithm is only a modification of current algorithm (the CART al-
gorithm is used, but also the other greedy algorithm may be used). The
growing phase remains the same, the only difference is in the post-pruning
phase, to where we introduce only one more tree operation. This operation
locally rearranges the tree. Our approach will be following. We will try to
prune leaves with the same probability of a target variable and which can be
neighbours after some changes in the inner-structure of the tree. Multiple
applications of our new operation could get these two leaves to be neighbours
and able to be pruned.

Now we look at the approach from a theoretical point of view, which will be
proved for the distribution. The first phase will introduce some terms used
in the following text. Then we show a theoretical theorem that the optimal
tree can be found by applying two operations — the prune operation and our
new operation called the parent-child exchange (PCE). This new operation
only locally rearranges the inner structure of the tree, remaining leaves’ def-
inition unchanged. First theoretical theorems do not show the way to find
the optimal tree, only that there exists a sequence of two types of operations
that can find it. Nevertheless, this theorem has a very important corollary
— after applying the prune operation (which cannot be undone in our ap-
proach), we are still able to get to the optimal tree by another sequence of
two types of operations. So, we may prune anytime we want. In addition,
because we sometimes need to make large rearrangements of the tree before
pruning, we will design our algorithm to prune always when it is possible.
The next part of this thesis will introduce the algorithm and proves that
this algorithm finds the optimal tree. The complexity of this algorithm is
polynomial in the number of leaves of the full tree (or, of the tree resulting
from the greedy phase respectively). The exhaustive search for the optimal
tree is exponential in the number of leaves of the same tree.

Note that theoretical results will be provided for a distribution. The algo-
rithm will be designed for both the distribution and the dataset, but the
proof will be for a distribution only. The only difference is that for a distri-
bution, we say that two leaves can be pruned, if the proportions of the target
variable are the same in these two leaves. For a dataset, a statistical test is
used — the tested hypothesis is: these two proportions are equal.
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3.3 Results on the Tree Size and Optimality

There are many works related to decision trees, their growing, a complexity,
and a split selection, among others. Most of them were focused to improve
current algorithms on any distribution.

Most of decision tree algorithms use top down induction of decision trees and
the greedy principle on one attribute (attributes are treated as standalone,
one best attribute is chosen for a split). Some works are improving the
growing phase of the algorithm to find a tree which represents the data for
more distributions. The greedy principle is a very good method, which is
commonly accepted. It is true that there exists a class of distributions,
for which the greedy principle does not find the tree which represents this
distribution. There were proposed many algorithms which use lookaheads to
prevent to stop growing the tree prematurely ([22],]28]).

There was also a research which was focused on using the other criteria
(not only the prediction accuracy) when growing a tree. The example is the
algorithm DMTT ([29]), which may use also the tree size as one of criteria
used when growing. This approach focus on both accuracy and tree size in
a growing phase and allows a restructuring of a decision tree as well. The
algorithm presented in [7] takes in question the estimated subtree size when
the splitting variable is chosen. An interesting idea is used in [6]. That work
improves a time-consuming algorithm for decision trees in the following way:
algorithm is anytime interruptible and it returns a reasonable result at any
moment.

Another work which concerns the accuracy and the tree size together is [24].
It proposes a method which uses pre-pruning based on a cross validation, so
growing stops when it seems that no further split is needed. This leads into
a non-overfitted tree with comparable prediction accuracy.

We know that no algorithm can give the optimal solution without the re-
duction of the set of distributions (under assumption P # NP). It can be
proven that for a given data set, the question whether there exists a decision
tree with at most k nodes is NP-complete ([10],[11]). Therefore, we will stay
at the most common greedy algorithm and we will reduce the set of distri-
butions — this can be a way to get out of the trap. We will focus primary
on the accuracy (we do not allow to reduce the accuracy) and we will focus
on the tree size as a secondary criterion (we are trying to reduce a tree size



CHAPTER 3. OPTIMAL TREE - PROBLEM DEFINITION 45

without reducing the prediction accuracy, or more general, in theoretical case
without changing the classification).

In this thesis, we define tree optimality as a number of leaves of the decision
tree. There are used also some other criteria for the optimality, for example
the number of nodes. For binary attributes, to that is this work restricted to,
the criterion the number of leaves and the criterion the number of nodes are
the same. The next commonly used criterion is the average tree depth. This
criterion is used when we have to deal with the CPU time. In the most of
data mining applications, the CPU time is not a problem. For several criti-
cal applications, as online credit card misuse detection, cluster of computers
may be used. Therefore, we will focus on the tree size only in our thesis.
The last note is about decision tables and decision rules. There are many
algorithms to find decision tables. Note that decision tables are not the same
as decision trees. It can be proved that the conversion of the smallest decision
tree from a decision table is NP-complete ([11]). Therefore, algorithms for
decision tables will not help us.



Chapter 4

Finding Optimal Trees

This chapter is the core chapter of this thesis. This chapter is divided into 3
sections.

In Section 4.1, a specific terminology will be defined. We will provide here
intuitive definitions, strict formal definitions and examples to illustrate the
meaning of these definitions. We will show also some supplementary theo-
rems, which may help to explain terms and their properties.

Section 4.2 provides some theorems on finding optimal decision trees. The
main theorems were the essentials for creating the framework of the algo-
rithm. Some of these theorems will be used in the proof that the algorithm
finds the optimal decision tree for particular distributions (called strong faith-
ful distributions — see later). The core of this section is to prove the ezistence
of a sequence of steps to get the optimal decision tree from a given tree which
represents a given distribution (it assumes that we have the optimal tree, the
given tree which represents the given distribution and we will show that there
exists a sequence of operations which converts a given tree to the optimal
one). Construction of this sequence is based on knowledge both given and
optimal tree. There is one more result in this section — it will be proven that
for strong faithful distributions that we can design our algorithm to prune
anytime — this will not mislead us so we will be able to get to the optimal
tree from a tree with prune operation applied.

The algorithm which finds the optimal decision tree from the distribution is
provided in Section 4.3. This algorithm is designed to work on any data and
allows more prunes, but only for strong faithful distributions is guaranteed
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that the optimal tree will be found. This section also provides a proof that
the provided algorithm really finds the optimal tree under given assumptions.

4.1 Definitions

This section includes notation, formal definitions and theorems. We will use
following notation for variables:

e Aj for a target variable and
e Ay, Ay, ... A, for input variables, also called predictors.

We will assume that these (binary) variables have values 0 and 1.

4.1.1 Probability Distribution

The first notion we will define is the (joint) probability distribution. The
distribution assigns a probability for each possible combination of values of
attributes (variables).

Definition 1 (Joint Probability Distribution) Let Ay, Ay, As, ..., A, be

a set of binary variables. Then the distribution (or the joint probability dis-

tribution ), denoted by P(Ag, A1, As, ..., A,), is a probability function assign-

ing to each combination of values (ag,ai,...,a,) € {0,1}" a non-negative

number, i.e. P(Ay = ag, A1 = ay,..., A, = a,) > 0 in such way that the
1 1

sum of these assigned values is 1, i.e. Y. > ... >, P(Ay = ap, 4 =

ap=0 a;=0 an=0

ap, ..., A, =a,) =1.

Remark 1 We will use some more notation. The marginal distribution
P(AO = CL(),AI = al,...,A,;_l = ai—laAi—i-l = az‘—i—l;---,An = CLn) will be

1
abbreviated expression for Y. P(Ay = ap, A1 = a1,..., A1 = a;_1,A; =
a;=0

a;, Aiv1 = @iz, .-, Ap = ay,). We may apply this sum several times to get
the marginal distribution of any dimension (lower than n).

In this text, we will assume only distributions, which holds

P(Alzal,AQZCZQ,...,An:CLn)>0
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Yay,asq, ..., a,, i.e. every possible combination of input variables has non-
zero probability (note that Ay is a target variable). These distributions will
be called full distributions.

Considering full distribution allows us to easily define some other notions.
Note that results of this work can be easily applied to all distributions, it is
only a large technical work (to handle special situations) in definitions and
theorems. This extension is not presented here.

The example of the probability distribution is shown in Table 4.1.

Table 4.1: Probability distribution P;. This distribution will be used in many
examples later.

Ay A1 Ay | P
0 0 ]0.08
0.16
0.20
0.03
0.09
0.18
0.20
0.06

—_ =0 O OO
—_—_ O O = = O
_ O = O = O

Let us define one more notion — the probability measure, or simply the prob-
ability. This notion is a generalization of the distribution to the all subsets
of the {0,1}""!. Therefore, we will denote this generalization by the same
symbol P.

Definition 2 (Probability Measure) Let P(Ag, Ay,...,A,) be a proba-
bility distribution. Then a probability measure P is defined for every set
S C {0,1}" by the expression

P(S) = Z P(Ay=ap, A1 =ar,..., A = ay).

(@0,a1,...,an)€S

Next, we will define the conditional probability distribution. In this text,
we will pay special interest to conditional probability distributions. The
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conditional probability distribution is the probability of the target variable
when we know values of all predictors (for every combination of values of
predictors, probability of the target is assigned).

Definition 3 (Conditional Probability Distribution)
Let Ay, A1, A, ..., A, be a set of binary variables. Let Aq be a target variable.
Then, the conditional probability is the function

P(Ag, Ay, .. Ap)
P(Ay, Ay, ... A,

Notice that conditional probability distribution is also a function of n +
1 variables assigning to each combination of values (ag,as,...,a,) a non-
negative value from [0, 1]. In addition, P(Ag = 1|A; = a1, Ay = ag, ..., A, =
a,) + P(Ag = 0|A; = a1,As = ag,..., A, = a,) = 1 and therefore it is
sufficient to know the (conditional) probability only for one outcome (e.g.
P(Ay =141 = a1, Ay = ag, ..., Ay, = ay)).

P(Ap|Ay, As, ... Ay =

In a similar way we define a conditional probability distribution for given
variables A; , Ai,, ..., Ai, where {i1,i9,...,1} € {1,2,...,n}, ie.

A, = PUo A Ay Ay)
)T TP(A Ay, A

Given a probability distribution P(Ap, Ay, ..., A,) and an arbitrary set L C
{1,...,n} one can always calculate the conditional probability distribution
P(Ap|A;,i € L) and this conditional probability distribution is unique be-
cause we consider only full distributions.

The example of the conditional probability distribution is in Table 4.2. This
conditional probability distribution is derived (calculated) from the joint
probability distribution P; shown in Table 4.1.

For a conditional probability distribution P(Ag|A;,i € L') there exists an
infinite number of distributions P(Ag, A1, ..., A,), from which we can derive
P(Ap|A;,i € L'). The only difference in these joint probability distributions
is in P(A;,i € L'). We may see such an example in Table 4.3.

In this example, there are two differences in P(A;, As) and P'(Ay, Ay). The
first difference is that P(A; = 1, A; = 0) was decreased form original 0.20 +
0.20 = 0.40 to new 0.11 + 0.11 = 0.22. The second difference is an increase
in P(A; =1, Ay = 1), which was changed from the original size 0.03+0.06 =
0.09 to the new size 0.09+0.18 = 0.27. Note that all conditional probabilities
P(Ap|A;, Ag) remain the same.

119 “1igy - )

P(Ag|A;, A

gy .-
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Table 4.2: The conditional probability distribution P(Ag = 1|41, Ay) for the
distribution P;. There are three more tables here — tables with P(Ay = 1|A5),
P(Ag = 1|A;) and P(Ap = 1). These tables are pre-calculated for the easy
reference in following examples.

A, A, P(A, =141, 4)
0 0 9/17
0 1 9/17
1 0 1/2
11 2/3
A, P(Ay = 1|A))
0 9/17
1 26,/49
Ag p(AO = 1|A2)
0 29/57
1 24/43
P(Ag=1)
53,/100

Table 4.3: Probability distributions P, and P], which both define the same
conditional probability distribution.

AO Al AQ Ao Al AQ Pll
0 0 0 [0.08 0 0 0 [0.08
0 0 1 |0.16 0 0 1 |0.16
0 1 0 [0.20 0 1 0 [0.11
0 1 1 10.03 0 1 1 10.09
10 0 ]0.09 10 0 1]0.09
1 0 1 10.18 1 0 1 ]0.18
1 1 0 [0.20 1 1 0 |0.11
1 1 1 ] 0.06 1 1 1 ]0.18
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4.1.2 Decision Tree

Next, we will define the binary tree using notions of the graph theory (see
for example [20]).

Definition 4 (Binary Tree) Let T=(V,E) be a graph with the following
properties:

1Bl = V] -1,

2. T is connected, i.e. for every pair of vertices vi,ve € V', there exists a
path from vy to vo,

3. one verter v, € V is called a root; length of a path from the root v, to
v 18 called a depth of v. Children of v € V' are those u € V', which are
adjacent to v and their depth is by 1 larger than depth of v,

4. every v € V has zero or two children.

Then, T is called a Binary Tree. Vertices with no children are called leaves.
For easy reference, we will split the set of vertices V' into two disjoint subsets
V =W UU, where W s the set of all leaves and U is the set of internal
nodes, or a set of non-leaf vertices.

The example of a binary tree is shown in Figure 4.1.

In the following text, the root vertex will be drawn as the top vertex of the
tree.

Now, we introduce two functions — first for vertices (it assigns a split vari-
able to every internal node) and second for edges (it assigns a value of the
respective split variable to every edge).

In this definition, the following notation will be used:

e Function m assigns a split variable A; to every internal node v.

e Function s is defined for every edge. Having the vertex v with the split
variable A; and children v; and vy, function s defines which child is
defined by the condition A; = 0 and which one by the condition 4; = 1
(i.e. formally s(v,v;) = 0 and s(v,ve) = 1).
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Figure 4.1: Example of a Binary Tree

Definition 5 (Binary Decision Tree) Let T = (V, E) be a binary tree.
Let A = {A, As,... AL} be a set of binary variables. Let m : U — A
be a mapping such that on every path P from the root v, to the leaf w,
every variable A € A can be assigned to none or one vertex (node). Let
s: E — {0,1} be a mapping such that Yv € U with children vy and vy there
is s(v,v1) + s(v,vg) = 1.

Then, T = (T, A, m,s) is a binary decision tree.

Figure 4.2: The example of the Binary Decision Tree

The example of a decision tree is shown in Figure 4.2. In this Figure, there
are two visualizations of the same tree shown. The right tree corresponds to
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a definition of a binary decision tree, the left one is a simplified visualisation.
In our example, the root node is split into two children by the condition
A, = 0 (the left child), or A, = 1 respectively (the right child). The right
child of the root is the node, which is split again, now by the variable A;.

Remark 2 In the following trees, for an internal vertex v with split variable
A; and children vy and vy, the child with the value of the split variable A; = 0
will be situated in the left, if not explicitly expressed otherwise.

There is one more point to emphasize. The definition of a decision tree also
requires that we will split by any variable at most one time on the any path
from the root to a leaf. This is without loss of generality, because the second
split by the same (binary) variable on the same path would lead into the
situation, that all observations would be in one child and second one would
be empty.

Now, we will tie the definition of the decision tree with the (conditional)
probability distribution. For a given distribution P(Ag, A1,...,A4,) and a
given decision tree T, we can derive the tree CPD Pr as follows: for each
combination of values (ay, as, ..., a,), we find a leaf to which ”this combina-
tion belongs to” and we denote the condition in this leaf as C,. Then, we
define Pr(Ag = 1|A; = a1, As = as, ..., A, = a,) as P(Ayg = 1|C,).

For a tuple of a given probability distribution P and a given tree T', we have
defined a tree CPD Pr. Note that for a given probability distribution P and
different trees T; and Ts, we may get different tree CPDs Pp, and Pr,.

We will define one more notion here. For a given probability distribution
P(Ap, Ay, ..., A,) and a tree T we say that the tree T represents the distribu-
tion P(Ag, A1, ..., Ay), or the tree T represents the CPD P(Ag|A1, As, ..., Ay)
if

Pr(AglAy, Ag, ..., A,) = P(Ag|A1, Ag, ... Ay).

Next, we introduce a full tree as the tree with all leaves in depth n. The full
tree is a tree with a maximum size. Note that the full tree represents any
distribution.
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4.1.3 Equivalence of Decision Trees

In this section, we will introduce two equivalences on decision trees. These
equivalences will be used later.

Definition 6 (Equivalent Decision Trees) Let T;, Ty be decision trees

with the same number of leaves. Let wy,ws, ..., wy be all leaves of T1 and
1, %9, ..., be all leaves of Ty. Let Cy,Cs, ..., C) be conditions assigned to
leaves wy, wa, ..., wi and let Dy, Do, ..., Dy be conditions assigned to leaves

T1,T2y...,Tk. Let M1 = {Cl, CQ, Cey Ck} and let M2 = {Dl, DQ, R ,Dk}
Then Ty and Ty are equivalent binary trees if My = M.

We have defined equivalence on decision trees. Two different trees may be-
long to one equivalence class, if their set of conditions assigned to leaves are
identical. The example of two such trees is shown in Figure 4.3.

Set of conditions

(four items, shown one per row)
A1 = 0, AQ = O
A =0, A4,=1
Ar=1,A4,=0
A1 = 1, AQ =1

Figure 4.3: Two decision trees which belong to one equivalence class and
their set of conditions assigned to leaves (identical for both trees).

Remark 3 Note that

1. all trees from one equivalence class define the identical tree CPD Pr
for every probability distribution, but
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2. two trees from different equivalence classes may also define the identical
tree CPD for a given probability distribution P.

Remark 4 All full trees are equivalent, i.e. set of all full trees corresponds
to one equivalence class.

We have defined equivalence on decision trees. Now, we are going to introduce
one more equivalence, which considers also the probability distribution.

Definition 7 (CPD Equivalence) Let P be a probability distribution. Then
decision trees Ty and Ty are CPD equivalent with respect to P, if their re-
spective tree CPDs are identical, i.e. Pr, = Pr,.

Note that for a given distribution P, when we use the abbreviated notion
CPD equivalent trees, we mean CPD equivalent trees with respect to P.

In Figure 4.4 we may see two trees, which are not equivalent, but which are
CPD equivalent. Due to the previous remark, every class of CPD equivalence
consists of one or several classes of decision tree equivalence.

Figure 4.4: Two trees, which are not equivalent (definitions of leaves are
different), but which are CPD equivalent (tree CPDs are identical) with
respect to distribution P; (see table 4.2 on page 50).

Let us emphasise that CPD equivalence is defined for a given distribution.
When we use another distribution, we may obtain completely different CPD
equivalence classes.

Remark 5 Let T and T' be two equivalent trees. Then they are CPD equiv-
alent with respect to any distribution P.
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4.1.4 Optimality of Decision Trees

In some situations, two or more decision trees may represent the same dis-
tribution. Which one will be the best for us? We will require the simplest
one. The simplicity will be expressed as the number of leaves (we will call it
the size of decision tree). Note that this definition of a size leads to the same
simplest tree as when we would count the number of nodes for binary trees.
This is not necessarily valid for non-binary trees — assume that the variable
By is binary and By has 60 distinct values, then the tree 77 (the root splits
by Bj; and then all nodes split by Bs) would have 123 nodes and the tree Ty
(the root splits by By and then all nodes split by B;) would have 181 nodes.

Definition 8 (Size of the Decision Tree) Let T be a decision tree. Then,
the size of the decision tree T is the number of its leaves (i.e. |W|). The size
of the decision tree will be denoted as |T)|.

The tree with a maximum size is the full tree and it has 2" leaves. Let us
remind that the full tree always represents all distributions. Now, we will
define the optimal decision tree as the tree which is the smallest one from all
trees representing a given probability distribution.

Definition 9 (Optimal decision tree) Let P be a probability distribution.
Let T = {T,Ts,..., T} be a set of all decision trees which represent the
probability distribution P. Then T* € T is the optimal decision tree with
respect to P, if |[T*| <|T| VT € 7.

Note that for a given distribution P, we will use the abbreviated notion
the optimal decision tree instead of the notion the optimal decision tree with
respect to P with the same meaning.

In Figure 4.5, we have four decision trees. Their tree CPDs are derived from
P, (the distribution defined in Table 4.1 on page 48), but only (b), (c), (d)
represent the probability distribution P, and (b) is the optimal one.
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Figure 4.5: Four decision trees and distribution P;

o7
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In general, more than one tree can be optimal. Consider the distribution P,
from Table 4.4. Let a, b, ¢, d, e be distinct numbers from interval [0, 1].

Table 4.4: Conditional probability distribution P,. For this distribution,
there exist more than one optimal decision tree (in this case there exist three
optimal decision trees, which are not equivalent). Note that a,..., e stands
for distinct numbers between 0 and 1.

Al AQ AS P(AO‘AD A2a AS)
0 0

(S S e B e R e Rl
— O ) O R O
T T Y 00 QA

0
1
1
0
0
1
1

We can find three decision trees representing P, which are not equivalent to
each other. Two of them are shown in Figure 4.6.

It is easy to show that there are exactly three equivalence classes of optimal
trees representing the distribution P,. Every tree in every equivalence class
has six leaves. There does not exist a tree representing P, with a lower
number of leaves.

Note that for non-binary trees, we can find an example of the distribution
on two variables only, where there exist at least two non-equivalent optimal
decision trees.

We will define later a particular class of distributions (we will call them
faithful, or weak faithful distributions), for which the only tree is optimal
(the only one equivalence class is optimal respectively).

4.1.5 Operations with Decision Trees

We will define some operations on decision trees. These operations transform
one decision tree representing a given distribution to another one representing
the same distribution. These operations will be used to reach our goal:
to find the optimal decision tree. The first operation we will define is a
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Figure 4.6: Two non-equivalent optimal decision trees for Ps.

prune operation. We will use only harmless prunes (with respect to a given
probability distribution), it means that the prune operation combines two
leaves with identical conditional probabilities P(Ag|C}) = P(Ag|C2) into one
leaf (to be more precise, it combines two leaves with their parent, which
becomes a leaf). The prune operation is shown in Figure 4.7 (note that in
this Figure, there is only a subtree which is a subject of change — one node
and two leaves are shown, other parts of the tree remain unchanged).

%&”

Figure 4.7: The prune operation

The following definition introduces this operation formally.

Definition 10 (Prune operation) Let T = (T, A, m,s) be a decision tree.
Let v,v" be two leaves in T' with a common parent v,. Let T' = (T', A,m/, s")
be a decision tree constructed as follows

1. V(T = V(T)\{v,v'},
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2. E(T") = E(T)\{(va, v), (va,0")},
3. m/'=m 1 U(T"), i.e. m' is restricted to a new set of internal nodes,
4§ =s1 B(T),

Then, we say that T' is constructed from T by one prune operation.

Remark 6 We will use only harmless prunes. We define that the prune
operation is harmless with respect to a given distribution P, if P(A|C,) =
P(Ao|Cy), where Cy,,Cy are conditions assigned to leaves v,v'. When we
will use prune operation in this thesis, we mean harmless prune operation
with respect to a given distribution P.

Remark 7 The prune operation transforms T toT’, T and T' are not equiv-
alent (they have a different number of leaves), but they are CPD equivalent
(i.e. they represent the same CPD) for all distributions, which are repre-
sented by T".

The next operation on decision trees is a parent-child exchange. This op-
eration locally rearranges the inner-structure of the tree without affecting
remaining parts of the tree. Assume that node v, defines a splits by m(v,)
and the split variables assigned to both children v, v of v, are the same (i.e.
m(v) = m(v')). In any path from the root to a leaf which includes v,, we
will split by m(v,) and m(v). The local change means the split first by m(v)
and then (in both nodes) by m(v,). This situation does not modify leaves
and their conditions, when we rearrange subtrees of v and v’ correctly. The
detail of this operation is shown in Figure 4.8.

Ty T T3 n

Ty T T3 Ty

Figure 4.8: The parent-child exchange operation. Symbols 77 to T, denote
subtrees.
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In a formal definition, we have to distinguish which edge goes to the left
(which is assigned the value 0 of the split variable) and which one goes to the
right. Two edges (edges connecting roots of Ty and T3 with their parents)
will be replaced by other two edges as shown in Figure 4.8.

Note that subtrees T} to Ty may also be one-node subtrees (leaves).

Definition 11 (Parent-child Exchange Operation)

Let T = (T, A,m,s) be a decision tree. Let v, € U and let v,v" € U be its
children. Let m(v) = m(v').

Assume without loss of generality that s((vs,v)) =0 and s((vg,v")) = 1.

We denote

e vy a child of v such that s((v,v1)) =0,
e vy is a child of v such that s((v,v9)) = 1,
e v3 is a child of v' such that s((v',v3)) =0 and
e vy is a child of v' such that s((v',v4)) = 1.
Let T = (T", A,m/, s") be a decision tree constructed as follows

1. V(T = V(T)

2. m'(w) = m(w) for all w # v,v',v,
3. m'(vg) = m(v)

4o (v) = m(vy), m' (V') = m(vy)

5. E(T") = BE(T)\{(v, v2), (v/,03) } U { (v, v3), (v, v2) }
6. §'(f) = s(f) 1 (E(T) N E(T"))

7. 8'((v,03)) = 1,8 (¢, 02)) = 0

Then, we say that T is constructed from T by one parent-child exchange
operation.

Remark 8 Let T be a decision tree. Let T' be a decision tree constructed
from T by one parent-child exchange operation. Then, T and T’ are equiva-
lent.
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4.1.6 Faithfulness and its properties

Most common algorithms for learning decision trees use the greedy principle.
This principle can fail on some CPDs (conditional probability distributions)
— it does not find a tree which represents the CPD. Consider a distribution
where dependent variable Ag is calculated as a function of independent vari-
ables A} XOR A, and P(Ay, Ay) is an uniform distribution (this distribution
is called zor distribution). For this distribution, the greedy algorithm will
stop with a one node tree, but this tree does not represent a given distri-
bution. Note that XOR distribution is not a full distribution (as defined on
page 48), but we may construct an example of full distribution, for which
the greedy principle fails.

Moreover, we will look for an optimal decision tree. We can divide the solu-
tion of this problem in two phases.

In the first phase, we will find the tree which represents a given distribution.
In the second phase, we will start with the tree from the first phase (i.e.
with the tree which represents a given distribution) and will find the optimal
decision tree using a sequence of operations defined in previous subsection.
We will show the algorithm for these two phases. We will also check the
complexity of this algorithm.

In this subsection, we introduce assumptions for the distribution (we will call
them weak and strong faithfulness), under which our algorithm will work
correctly and with the acceptable complexity.

For the first phase of our algorithm, we will need the strong faithfulness, for
the second phase, the weak faithfulness will be sufficient. We will show that,
under assumption of the weak faithfulness, it is sufficient to use only two
operations (prune and parent-child exchange) in the second phase to find
the optimal decision tree. Moreover, every sequence of prune and parent-
child exchange operations leads into the tree, from which we can get the
optimal decision tree by another sequence of prune and parent-child exchange
operations (so we will not get into a ”dead end” by applying prune and
parent-child exchange operations).

Applying our algorithm to a distribution, which is not faithful, may lead into
a "dead end” situation (e.g. in situation, where we are not able to reduce
the number of leaves by any combination of prune and parent-child exchange
operations, but the current tree is not optimal). Next, we will show that the
random distribution is strong faithful with probability one.

In this thesis, we do not want to introduce operations which add extra leaves
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Table 4.5: Conditional probability distribution P;, which is not faithful, and
for which algorithm may fail (* means any value, a # b.)

Ay Ay Az | P(Ag|Aq, Ag, A3)
* 0 0 a
* 1 0 b
0 * 1 a
1 * 1 b

and nodes. It could lead to uncontrolled growth of the tree and there is no
guarantee that the tree will be reduced afterwards. It could also affect the
complexity (every newly created leaf should be removed later, or, to be more
precise, for every newly created leaf there have to exist one or more other
leaves which will be removed later).

Now, we show an example of non-faithful distribution, for which the algo-
rithm may fail. The conditional probability distribution Pj is shown in Table
4.5.

In Figure 4.9 on the left, there is the decision tree representing P; shown,
which cannot be transformed to the optimal tree by application of a sequence
of prune and parent-child exchange operations only. Note that we are not
able to neither apply any parent-child exchange nor prune operation.

The optimal tree which represents the conditional probability distribution
Pj is shown in Figure 4.9 on the right.

066 6¢0 %e 0@0 OGO

Figure 4.9: Non weak faithful distribution. Both trees represent P, tree on
the right is optimal. It is impossible to transform the tree on the left to the
optimal tree by a sequence of prune and parent-child exchange operations.
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Definition 12 (DT defining weak faithfulness)

Let P be a distribution. Let T = (T, A,m,s) be a decision tree which
represents P. Let vi,va,...,v be all leaves of T and C1,Cs,...,Cy be their
corresponding conditions. Let Pp(Ao|C;) # Pr(Ao|C;) for i # j. Then, we
say that the decision tree T is a tree defining a weak faithfulness, or T s a
wEFF tree.

Definition 13 (Weak Faithfulness for Distributions) Let P be a dis-
tribution. We say, that the distribution P is weak faithful (wFF DT), if
there exists a wFF tree T which represents P.

We will look at some properties of weak faithful distributions.

Theorem 9 Let P be a weak faithful distribution. Then, all optimal decision
trees are equivalent.

Proof. Obvious. It is sufficient to show two claims — first, the wFF tree T
is optimal and second, any optimal tree is equivalent to T.

Now, we show that T is optimal. All leaves of T denoted by w; have different
probabilities P(Ay|C;), where C; is a condition assigned to a leaf w;. (it
follows from the definition of wFF tree). Trees which have a lower size than
T does not represent P — every tree, which represents P, have exactly |T|
distinct values of P(Ag|A1, As, ..., A,). Therefore, the tree which represents
P must have at least |T| leaves.

The remaining claim is that any optimal tree is equivalent to T. It is clear
from the following.

1. Trees with a bigger size than |T| are not optimal (T has the lower
number of leaves).

2. Tree T' for which holds |T'| = |T| represents P iff its set of conditions
assigned to leaves Cy,Cy,...,Cjp| is the same as for the tree T (we
have |T| distinct values of P(Ag|Ay, A, ..., A,) and there is only one
possibility how C1, Cs, ..., Cjr| can be defined, so the optimal tree must
be equivalent to 7).
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Corollary 10 Every wFF tree is optimal.

Remark 11 We will use the notion classical decision tree growing algo-
rithm. This is any algorithm for decision tree growing which satisfies the fol-
lowing assumption. When the decision tree algorithm is deciding whether it
is possible to make a split of the vertex v and if there exists a variable A; such
that assigning the variable A; to the node v we would obtain children v',v" of v
with corresponding conditions Cy and Cyr such that P(Ag|Cy) # P(Ao|Cyr),
then algorithm does not stop with v as a leaf. Note that we do not have any
requirements which variable is chosen if more variables satisfy this condition.

Definition 14 (Strong Faithfulness for Distributions)

Let P be a probability distribution. We say that P satisfies strong faith-
fulness for decision trees (or sE'F DT) if P satisfies wFEF DT and for every
decision tree T which represents P the following holds : Let v € U be a
node in T and let v',v" € V be its children. We denote C,,Cy and Cyn
conditions assigned to the corresponding leaves. Let P(Ag|Cy) = P(Ap|Cyr)
(= P(Ao|Cy)). Then for every node v" in the subtree defined by the node v
(in any depth, including leaf nodes) there is P(Ao|C,) = P(Ag|Cyr).

This definition guarantees that the greedy tree growing will not stop prema-
turely. The rationale follows. Let P be a probability distribution and let T g
be any full tree (we know that T g represents the probability distribution P).
We assume that growing was stopped with the tree T because for every
node v which can be split into v" and v” by installing the variable A;, there
is P(Ao|Cy) = P(Ap|Cyr). Due to the definition of sFF DT, every node v"
in the subtree defined by a vertex v has P(Ay|Cy») = P(Ap|C,). This holds
for every such vertex v and therefore T represents the same distribution as
T¢. And because the full tree T represents P, the tree T also represents
P.
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4.2 Theorems about Finding The Optimal
Decision Tree

In the previous section, we have defined strong faithful distributions. We will
present and prove our main theorem for strong faithful distributions — we
can find the optimal decision tree for a given distribution using the classical
decision tree growing algorithm. The proof of the theorem is based on two
key lemmas — the first one shows that we can find a tree that represents data
(which is not necessarily optimal), and the second one shows the way how to
find the optimal tree from the tree from the first lemma. Finding a tree which
represents the data requires the assumption of sSFF DT, "restructuring” the
tree to find the optimal tree requires only wFF DT. We know that the strong
faithfulness implies the weak faithfulness, so the following theorems will be
proven under a ”common” assumption of the strong faithfulness.

Theorem 12 (Finding the optimal tree from data) Let P be a distri-
bution P(Ag, A1, Aa, ..., Ay) which is strong faithful (sFF DT). Let T* be
an optimal tree which represents the distribution P. Then, there exists a
sequence K of trees T1,To, ..., Trp, Trp+1,- .., Tk such that

e T, is a tree with a single node (=root node),
e Tgp is a tree that represents P (not necessarily optimal),

o foralli=1,2,..., RD—1, the tree T;y1 is constructed from T; by one
step of the classical algorithm for decision tree growing,

o forallt=RD,RD+1,... k—1, the tree T;,4 is constructed from T;
by one prune operation or one parent-child exchange operation,

L] r:[‘k:']:b‘<

Proof. To prove this theorem, we will introduce two lemmas — Lemma 13
and Lemma 14. The proof of this theorem immediately follows from the
these two lemmas.

O

Lemma 13 (Algorithm finds a tree that represents a distribution)
Let P be a distribution, which satisfies the strong faithfulness for decision
trees. Let T be a tree which is the output from the classical algorithm for
decision tree growing. Then, T represents the distribution P.
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Proof. The proof immediately follows from the definition of the strong
faithfulness. Let T be a tree which is a result of a classical algorithm for
decision tree growing. Our assumption on this algorithm says that every node
v, which would be split into children v; and vq, holds that P(Ay = 1|C,,) =
P(Ay|C,y,) and therefore also P(Ay = 1|C,,) = P(Ay|Cy,) = P(Ap|Cy). Let
T’ be a tree, which is based on T, but all branches are ”grown” to the full
tree (by the same greedy algorithm, neglecting a stopping criteria for decision
tree growing, even when we would obtain identical conditional probabilities
in both children). The situation is shown in Figure 4.10.

Figure 4.10: Two decision trees. The decision tree T is a tree drawn in full
lines, bounded by dashed lines. The tree T’ is a tree with all drawn nodes
and branches (including dotted branches and grey nodes). Note that v is a
leaf in the tree T, but an inner-node in the tree T".

It is obvious that T’ represents the distribution P (T is the full tree). Due
to the strong faithfulness (we will use the definition of the strong faithfulness
applied to a specific case T”), all descendants of v have assigned conditional
probability P(Ag|C,), so both T and T’ represent the same CPD and there-
fore T represents P.

O

In the next lemma, we will show that for a given wFF DT distribution P and
for any tree T which represents the distribution P, there exists a sequence
of prune and parent-child exchange operations which transforms T to the
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optimal tree T*. Note that this lemma is not a ”cookbook” how to construct
this sequence, we will prove only that this sequence exists.

Lemma 14 (Transformation to the optimal tree) Let P be a distribu-
tion which satisfies the weak faithfulness for decision trees (wFF DT). Let
T be a tree which represents the distribution P. Let T* be the optimal tree
which represents the distribution P. Then, there exists a sequence S of trees
T, T, ..., Ty such that

1. all trees in S represent the distribution P,
2. Ty =T and T}, = T*,

3. forallt=1,2,... .k —1, the tree T; 1 is constructed from T; by one
prune operation or one parent-child exchange operation.

The proof of this lemma will be provided after introducing several supple-
mentary lemmas.

The first lemma required for the proof is Lemma 15. It says that when we
have any tree which represents the distribution P which is weak faithful,
then from the definition there exists some tree T* which is the optimal deci-
sion tree (defines wFF DT), in which all leaves w; has different probabilities
P(Ay|Cy,;). We will denote the root of this optimal tree as v¥ and the vari-
able assigned to v} as Ar. Then, the condition in all leaves of any tree which
represents P must include the literal A = 0 or the literal A = 1. It is
clear because in the optimal tree, in both root’s branches we have different
conditional probabilities P(Aq|Cy,) in leaves w;. So every condition assigned
to leaf in every tree which represents P has to have the literal Az = 0 or
Agr = 1 in its definition. That means that A has to be on every path from
the root to the leaf in every optimal tree which represents P.

Lemma 15 Let P be a distribution P(Ag, A1, As, ..., Ay,) which satisfies the
weak faithfulness for decision trees (WFF DT). Let T = (T, A, m, s) be a tree
which represents the distribution P. Let T* = (T*, A, m*, s*) be the optimal
tree which represents the distribution P. Let v} be the root of the tree T*.
Let m*(v}) = Ag. Then, for every v € W(T), Ag is on the path to v.

Proof. By a contradiction. Assume that there exists a branch which do
not contain Ag. So there exists a leaf v, which does not include Ag in a



CHAPTER 4. FINDING OPTIMAL TREES 69

condition assigned to v. But T* = (T*, A,m*, s*) is the optimal tree which
is equivalent to the decision tree defining wFF DT. Now, we will look at the
condition assigned to the leaf v in T = (T, .A,m,s) and we will look which
value should be assigned to P(Ay|C,). We know that both trees represent P,
so this conditional probability must be equal in both trees. For the decision
tree defining wFF DT, the probability P(Ay|C) must be different for leaves
where is Ar = 0 and leaves where is Agp = 1. Due to the full distribution
assumption, the tree T = (T, 4,m,s) and the tree T* = (T*, A, m*, s*)
cannot represent the same distribution — this is the contradiction. So all
branches contain Ag.

O

In the next lemma, we will keep a notation that Ag is the variable assigned
to the root of the optimal tree T* and we will prove that in the tree T (not
necessarily optimal; in any tree which represents P) there exists a vertex v
which has assigned the variable Ar (i.e. m(v) = Ag) and its neighbour v’
has also assigned the variable Ar. The set of vertices which have assigned
the variable Ar will be denoted by Vg and the parent of v (and v') will be
denoted as v,. As a result, the variable Ar assigned to these two vertices
(v,v") can be "moved up” by a parent-child exchange operation (with v,).

Lemma 16 Let P be a distribution P(Ag, A1, A, ..., A,) which satisfies the
weak faithfulness for decision trees (WFF DT). Let T = (T, A, m, s) be a tree
which represents the distribution P. Let T* = (T*, A, m*, s*) be the optimal
tree which represents the distribution P. Let v} be the root of the tree T™.
We will denote m*(v,) = Agr. Let Vi be a set of nodes v" € U(T) for which
m(v") = Agr. Let v € Vg be a node in the highest depth from all nodes in
Vr. (If there are more nodes into the highest depth, we can choose any of
them. For all of them the lemma holds). Assume that v is not a root of

T = (T,A,m,s). Let v be a neighbour of v and v, be their parent. Then,
m(v') = Ag.

Proof. We assume (for a contradiction) that a node in the highest depth
v € Vg (note that at least one node has assigned the variable Ag due to
Lemma 15) has a neighbour v" which has assigned the other variable. Note
that Ag can be on every path from the root to the leaf maximally one time
(the second occurrence is useless for binary variables; this fact is guaranteed
by our definition of the binary decision tree), so neither v, nor any parent of
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any level up to the root can have assigned the variable Ag. From Lemma 15,
Apg is on every path to a leaf. So splitting by Az must be done by any vertex
below the v' (in some descendant of v') and that is the contradiction with
the assumption that v is a node with the highest depth which has assigned
the variable Ag.

O

Lemma 17 Let P be a distribution P(Ag, A1, As, ..., A,) which satisfies the
weak faithfulness for decision trees (WFF DT). Let T be a tree which repre-
sents the distribution P. Let T* be an optimal tree which represents the
distribution P. Let v} be the root of T*. Let m*(vf) = Agr. Then, there
exists a sequence S of trees T1,To, ..., Ty such that

1. all trees in S represent the distribution P,
2. Ty =T and T}, has the variable Ar assigned in its root node,

3. forallt=1,2,... k —1, the tree T; 1 is constructed from T; by one
parent-child exchange operation.

Proof. We will use Lemma 16 several times. To ensure that the entire
process is finite, we may define h as a sum of depths of nodes, which have
assigned the variable Agr. So when node v has assigned the variable Ar and
its distance from the root is b, it contributes to A with b+ 1. We will use the
specified Lemma repeatedly and after each step, h will be decreased. We will
stop when h = 1, i.e. Apgisin the root. The step is: from Lemma 16, we have
vertices v, v' and their parent v,. Nodes v and v' have assigned the variable
Ag. So we may apply a parent-child exchange of v, v' with v,. This step
will decrease h, because Ar was moved up by 1 in one branch and removed
(due to the parent-child exchange) from the other branch. The parent-child
exchange operation does not modify any condition assigned to decision tree
leaf, so Lemma 16 can be applied repeatedly until h = 1.

O

We are going to prove the main point of Lemma 14 by the following Lemma.
We will show that there exists a sequence such that in the first step we will
use only parent-child exchange operations and in the second step we will use
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prune operations only to get T* from our T. The first step is almost proved
(it will be proven by repeated use of Lemma 17). Lemma 18 will finish the
first step — that there exists a tree T' which represents P (the result from
the first step), which can be easily pruned into T* (so the second step will be
easy to show). In Lemma 18, we will use the notions restriction and mapping.
Mapping r used in the following lemma only 'renames’ vertices, allowing T’
to have more vertices than T*. Also, assigned variables must correspond. In
fact, T” is based on T*, only some leaves of T* are grown to next levels.

Lemma 18 Let P be a weak faithful distribution P(Ao, A1, Aa, ..., Ay). Let
T be a tree which represents the distribution P. Let T* be the optimal tree
which represents the distribution P. Then, there exists a tree T' and a se-
quence S of trees Ty, T, ..., Ty such that

1. the tree T* is a restriction of the tree T’ i.e. that there exists a mapping

r: V(T*) — V(T
(a) for the root vy of the tree T, r(vy) is the root of T,
(b) forv,v" € V(T), if (v,v") € E(T), then (r(v),r(v')) € E(T),
(¢c) for allv e U(T), there is m(v) = m/'(r(v)),
(d) for all (vi,v9) € E(T), if v) = r(vl),vh = r(v2) then s((v1,v2)) =
s((v1,v5))
2. all trees in S represent the distribution P,

3. Ty =T and T, =T,

4. foralli=1,2,...,k—1, the tree T;11 is constructed from T; by one
parent-child exchange operation.

Proof. We will use Lemma 17 several times. From the previous lemma,
we can transform out tree by a sequence of parent-child exchange operations
to the tree T;, which has assigned the variable Ag in its root. This lemma
will be used repeatedly for all non-leaf nodes of the optimal tree from top to
down. We can now simply apply this lemma (or a simple generalization of
this lemma) to both children of the root (assuming a marginal distribution
with respect to the condition corresponding to this node, which is also wFF
DT) and so on until we reach leaves in all branches.
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O

Proof of Lemma 14. We assume that our distribution is wFF DT, so there
exists the wFF tree T (from the definition of wFF DT). This tree is optimal
due to the corollary 10. Note that all optimal trees are equivalent due to
theorem 9 so we may assume without loss of generality that T/ = T*. We
will use the notation T* for both optimal tree and wFF tree (tree defining
weak faithfulness).

Our goal is to show that we can transform the tree T to T* in two steps. In
the first step, we will use only parent-child exchange operations and we will
transform the tree T to the tree T” such that T” can be transformed to T*
by a sequence of prune operations. To be more specific, T” and T* will have
assigned identical variables in the root and in all non-leaf nodes in identical
positions (i.e. function m restricted to the optimal tree will be identical for
T” and T*). In the second step, we will prune the tree T” to get the tree T*.
Lemma 18 will prove the first step, the second step will be easily shown:

We have the tree T which is the result of Lemma 18 and we only need to
prune it. We will use the notation from the mentioned lemma.

Let v* € W(T") be any leaf of the optimal tree. Denote v = r(v*). We know
that both T/ and T* represent the same distribution P and therefore for any
descendant v” of v/, there is P(Ay|Cyr) = P(Ao|Cy). So the entire subtree
of v’ can be transformed into a single node by a sequence of prunes.

This step will be repeated for every leaf of the optimal tree T*.
O

Note that we have shown that for any tree which represents a weak faith-
ful distribution P (not only for the tree which is the result of the classical
algorithm for decision tree growing), there exists a sequence of parent-child
exchange and prune operations that leads to the optimal tree. This is very
crucial for an algorithmic approach. Moreover, when we apply any parent-
child or prune operation, it is not possible to get in the "situation with no
exit” (i.e. to the situation that no sequence of prune and parent-child ex-
change operations can transform the current tree to the optimal one). After
applying the parent-child exchange operation (PCE) , we can undo it by the
second parent-child exchange operation. After applying the prune operation,
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we also have the tree which represents the distribution P, but we have proved
that from this tree, we can get the optimal one by another set of prune and
parent-child exchange operations.

Corollary 19 (We cannot ”lose track” by prune or PCE) Let P be a
weak faithful distribution P(Ag, A1, As, ..., A,). Let T' be a tree which repre-
sents the distribution P. Let T be a tree which is constructed from T’ by one
prune operation or one parent-child exchange operation. Let T* be the opti-

mal tree which represents the distribution P. Then, there exists a sequence
S of trees Ty, T, ..., Ty such that

1. all trees in S represent the distribution P,
2. Ti =T and Ty = T~,

3. forallt=1,2,... .k —1, the tree T; 1 is constructed from T; by one
prune operation or one parent-child exchange operation.

Proof. Immediately follows from Lemma 14.

O

So we can design the algorithm to apply the prune operation whenever it
is possible. For weak faithful distributions, it have been proved that the
optimal tree can be reached.

Note that this corollary is not valid for distributions that are not weak faithful
— we can get in a situation that there is no way how to get the optimal tree
when we will use only parent-child exchange and prune operations.

There is one more thing we can easily prove and which can help us to under-
stand what is the tree defining wFF DT and its properties.

Remark 20 Let P be a weak faithful distribution.Let T* be the optimal de-
ciston tree which represents the distribution P.Then, T* is a wFF tree.

Proof. Immediately follows from Theorem 9 and definitions.
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4.3 Algorithm

In this section, we describe the algorithm which finds the optimal decision
tree from the distribution which satisfies strong faithfulness. The subsection
4.3.1 shows a high-level overview of the algorithm, following subsections show
the algorithm in detail — a pseudocode for the entire algorithm and individual
procedures/functions will be provided.

4.3.1 Algorithm overview

The algorithm, which we propose here, is based on any classical algorithm
for decision tree growing (for example, CART). The only change is in the
post-pruning phase, which is totally changed. The basic idea is shown in the
following schema.

| |

The classical decision tree algorithm with the post-pruning

The growing phase

e Split nodes until no leaf can be split in two children with different
conditional probabilities assigned (or some stopping rule is met,
see section 2.2)

The pruning phase

e Repeat
— found:=Find two leaves vy, v9
x with the same conditional probability assigned to the leaf
* which are neighbours

— Iffound, Then prune vy, vy

e Until not found
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|

The FindOptimalTree algorithm

The growing phase

e Split nodes until no leaf can be split in two children with different
conditional probabilities assigned (or some stopping rule is met,
see section 2.2)

The pruning phase

e Repeat

— found:=Find two leaves vy, vy
x with the same conditional probability assigned to the leaf
* which can be neighbours

— Iffound, Then prune vy, vy

e Until not found

The only difference in algorithms is which pair of leaves can be pruned. The
only change is in the ”. .. which can be neighbours” statement. Note that this
operation is not so easy as it may appear. So we will focus in the following
text on testing whether two leaves can be neighbours.

| |

The algorithm for testing whether two leaves can be neighbours
after some sequence of parent-child exchange operations (overview)

The condition whether leaves v; and vy can be neighbours after some sequence
of PCE operations may be tested in the following way.
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1. test ”continue/fail condition” —leaves, which can be neighbours, have
to satisfy this condition: when we look at condition assigned to both
leaves vy, v, then variables in C,, and C,, are the same and values are
the same except one (denote this variable Acg). Consequences of this
include that both leaves have to be in the same depth in the tree.

2. find the Common Root (CR) of the v; and vy — common root is a
node which is a parent (not necessarily direct parent, maybe grandpar-
ent, maybe great-grandparent and so on) in the highest depth in the
tree. Note that the Common Root can be also found by its another
property —it’s a parent of v; and vy which defines a split by the variable

Ackg.

3. define variables to be shifted down — this set of variables L is de-
fined as wvariables which define splits from the child of CR into the leaf
vy (or, into the leaf vy, which is equivalent). In the example in Figure
4.11, there is L = { Ay, A3}.

Figure 4.11: Checking whether two vertices v; and vy can be neighbours.

4. parent-child exchange with CR — try if any of elements of L can be
moved to both children of CR. In situation that we find such element,
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we will move it to both children of C'R | next we will apply a parent-
child exchange operation for C'R and its children and we will repeat this
step until L is empty or no variable of L can be moved to both children
of CR. Note that Figure 4.11 does not provide enough information
whether any variable of L can be moved to both children of CR — we
need to know more information. The example will be provided later,
when we will describe the algorithm in a more detail.

5. explore the result — nodes v; and vy are neighbouring leaves iff L is
empty. In this situation, we will prune them.

The most important step from the practical point of view and the most
interesting step from the theoretical point of view is the step 4. This item
locally does an operation which constructs a sequence that makes nodes to
be neighbours and able to prune. From the theoretical point of view, it
was proved that for a weak faithful distribution (see Lemma 17 on page 70,
which can be easily extended to a subtree) and leaves v; and vy for which
P(Ao|Cyy) = P(A|C,,) there exists at least one element of L that can be
moved using a sequence of parent-child exchange operations to both children
of C'R (this also means that this item is included in all branches under the
CR). Our algorithm tries attributes of L one by one, until L is empty or none
of elements can be moved to both children of C R. The Corollary of this claim
is that there exists a sequence of parent-child exchange operations, which
transforms our original tree to the tree where v; and vy, are neighbouring
leaves and can be combined. It can be also proven that when more than
one attribute can be moved to both children of C'R, then we can choose any
of these attributes as the first one and this leads to moving v; and vy to
neighbouring nodes (note that for fixed vy, vo and C'R, every attribute which
was moved to both children of C'R, after parent-child exchange disappears
from L and there is no way how to introduce new elements into L).

It is easy to show that this algorithm is polynomial in the number of leaves
of the tree from the greedy phase of the CART algorithm (by estimating the
complexity of every individual procedure; detailed study of the true com-
plexity is out of the scope of this thesis and it is a subject of future work).
On the other hand, an exhaustive searching of all possible candidates for the
optimal tree (which are smaller than the result from CART) is exponential
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in the number of leaves of the tree from CART.

In following sections, we will describe this algorithm in a more detail.

4.3.2 Algorithm FindOptimalTree summary

We describe this algorithm from scratch. Our algorithm (FindOptimalTree)
provides an extension to any decision tree algorithm based on TDIDT and
the greedy principle with post-pruning (for example, CART, ID3). The only
change is in a post-pruning phase, which is totally changed (as it is shown
in the beginning of Section 4.3.1). The algorithm uses several pocedures,
which are called. The main structure of procedure inclusions is shown in the
following scheme.

FindOptimalTree

!
OptimiseTree

!

JoinSucceeded

!
CanBubbleToCRPlusOne

1
CanBubbleToNode

The more detailed description of each procedure follows.

FindOptimalTree — procedure, which calls the growing procedure and
then the optimising procedure OptimiseTree.

OptimiseTree — this procedure realises the extended post-pruning phase
shown in the overview. It tries to find a pair of leaves with both iden-
tical probabilities of target (or with statistically insignificant difference
for the finite version) with ability to be moved to the neighbour ver-
tices by a sequence of parent-child exchange operations. The second
property is tested by the function JoinSucceeded, only the continue/fail
condition (see condition 1 in algorithm overview on page 76) is applied
in the OptimiseTree procedure.
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JoinSucceeded — function, which finds a sequence of PCE operations (if
exists) for two leaves to be neighbours. It assumes that leaves are in
the same depth in the tree (which is a consequence of the continue/fail
condition). It arranges a list of variables which should be moved to the
root of the subtree defined by C'R node and uses multiple calls of the
CanBubble ToCRPlusOne function.

CanBubbleToCRPlusOne — checks whether a given variable can be moved
to both children of C'R node; uses two calls of CanBubbleToNode func-
tion.

CanBubbleToNode — checks whether a given variable can be moved to
a specified node.

Now, we will show the FindOptimalTree algorithm in detailed steps (in a
pseudocode, with comments in the text). The main procedure is in Figure
4.12.

Function FindOptimalTree(Data)
1. Tree:=GrowTree(Data)
2. Tree:=OptimiseTree(Tree)

End Function

Figure 4.12: Steps of FindOptimalTree algorithm

This main procedure only says that finding the optimal tree consists of two
phases — growing a tree (function GrowTree) and optimising a tree (function
OptimiseTree). The function GrowTree will not be shown here, we will use a
growing phase of a particular TDIDT based algorithm (examples are shown
in Section 2.3). The only change is in the post-pruning phase. The function
that realises it is Optimise Tree which is described in Section 4.3.3.
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4.3.3 Function OptimiseTree

This function realises the changed post-pruning phase. First, we show it in
a pseudocode (see Figure 4.13).

Function OptimiseTree(Tree)

1. Create a list containing every pair of leaves. For every pair (v, vs),
check if

(a) The conditional probability is the same in both leaves, i.e.
P(Ao|Cy,) = P(Ap|C,,) (or the difference is statistically insignifi-
cant for the dataset).

(b) (the continue/fail condition for ”can be neighbours”) Both leaves
in a pair are defined by the same set of attributes, except one,
where the attribute name is the same, only the value is different.

2. L:=list of (v1,v9) which satisfies 1(a) and 1(b). Sort L in such way
that all pairs of neighbours in the current tree precede pairs of non-
neighbouring leaves (this only ensures not to be worse than the original
post-pruning with prune only) and then by p-values as a secondary sort
criterion. Then, go through this list (until the first success or the end
of the list if there is no success).

(a) If JoinSucceeded(Tree,vy,v9) Then Goto 4 End If
3. [no pair can be combined| Ezit, Return Tree

4. Goto 1 (with a new tree, where v; and vy are pruned into one leaf now)

End Function

Figure 4.13: Function OptimiseTree

Let examine the function OptimiseTree in a more detailed view. The condi-
tion 1(a) says that two leaves in a pair can be neighbours in some tree. They
do not need to be neighbours (this is the main improvement in a comparison
with a standard post-pruning), but we cannot guarantee that we can reor-
ganise the tree (without adding new nodes) to make them neighbours. Let’s
have leaves

L1 = (Al = O,A2 = ]_,A17 == O),
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Ly:= (A1 =14, =1,A47;=0),
Ly:= (A1 =0,4,=1),
Lii=(Ay=0,A, =1, A1, = 0).
Then the pair (Lq, Lo) satisfies the condition 1(a), (Ls, L3) does not and
(Ls, Ly) also does not satisfy the condition 1(a).

We will show this procedure on the example. In Figure 4.14, we are given
a tree from greedy phase. We will denote p; = P(Aq|C,,) and assume that
p1 = p2 and p; # p; for i # j otherwise.

Figure 4.14: The tree given by the greedy phase.

We will show how the algorithm works in detail. First, we will present a
supplementary table with a description of leaves v; and probabilities p;.

node | Ay Ay Az | p;
(%] 0 0 0 P1
Uy 1 0 0 | p:
(%] 0 0 1 P3
Uy 0 1 any | ps
Us 1 1 0 y s
Vg 1 0 1 Ps
V7 1 1 1 | pr
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In the following table, there is a list of all pairs of nodes (v;, v;), where i < j.

Node Node Node 1 Node 2 continue/ | equal target
1 2 Ay Ay A | Ay Ay Az | fail cond. | probability
(%1 V2 0 0 0 1 0 0 1 1
(%1 Vs 0 0 0 0 0 1 1 0
V1 V4 0 0 0 0 1 any 0 0
U1 Vs 0 O 0 1 1 0 0 0
(o Vg 0 O 0 1 0 1 0 0
U1 V7 0 O 0 1 1 1 0 0
Vg V3 1 0 0 0 O 1 0 0
Uy Uy 1 0 0 0 1 any 0 0
Vg Us 1 0 0 1 1 0 1 0
(%) Vg 1 0 0 1 0 1 1 0
V2 (%4 1 0 0 1 1 1 0 0
V3 (1 0 0 1 0 1 any 0 0
(% Vs 0 0 1 1 1 0 0 0
V3 Vg 0 0 1 1 0 1 1 0
V3 V7 0 O 1 1 1 1 0 0
Uy Vs 0 1 any| 1 1 0 0 0
Uy Vg 0 1 any| 1 0 1 0 0
Uy vy 0 1 any| 1 1 1 0 0
U Vg 1 1 0 1 0 1 0 0
Us V7 1 1 0 1 1 1 1 0
Vg V7 1 0 1 1 1 1 1 0

In this example, there is only one pair with equal probabilities p;. Moreover,
this pair passed the continue/fail condition (condition 1b in Figure 4.13). So
we will try to use a sequence of parent-child exchange operations to move
these two nodes to be neighbours. This sequence is found (if exists) by the
JoinSucceeded function, where the example continues.

4.3.4 Function JoinSucceeded

Now, let examine the Function JoinSucceeded (see Figure 4.15) in a more
detail. First, what is the Common Root in our example (see Figure 4.14)7

When v; and vy would be neighbours, C'R would be their (direct) parent.
When v; and vy differs in a value of the attribute A; and a (great-grand-)



CHAPTER 4. FINDING OPTIMAL TREES 83

Function JoinSucceeded(Tree,vy, vs)

1. Find the Common Root of v; and vy and put it into CR. The Common
Root C'R is such vertex in the tree that both v; and vy are descendants
of CR (not necessarily children, they are only in the subtree with root
CR) and CR is the node in the maximal depth which satisfies the
previous condition.

2. S:=list of variables which defines splits on the path from C'R to vy (or
vy, lists are the same), except a variable which defines the split in C'R.

3. Forallse S
(a) If CanBubbleToCRPlusOne(s,C'R,vy,v2) Then
(b) S:=S\{s}, PCE(CR,CR+1)

(¢) Goto 5

(d) End If

4. [no variable from S can bubble to both children of CR | Exit, Return
FALSE

5. If S = () Then Prune(CR,v1,v2), Return TRUE, Erit Else Goto 3 End
If

End Function

Figure 4.15: Function JoinSucceeded
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parent of both named v, has a split variable A;, then v, is the common root
of v1 and vs.

Next, we want to use a set of parent-child exchanges (PCEs) (to "bubble”)
to move the attribute s into children of C'R in order to make PCE (a parent-
child exchange operation) for CR and his children. Note that we do not
require all variables from S to be able to "bubble” to both children of CR,
we only require one variable is able to ”bubble” to both children of CR. After
this and PCE, C'R’s depth is increased by 1 and the length of S decreased
by 1. This process ends when S = (), or, that is, C' R has two children v; and
V9. In this situation, we can use the standard Prune operation.

Note that we require that there exists an ordering of items in S such that
the first item (attribute) can bubble into both children of C'R. Then, after
applying PCE, the second can bubble to both children of C'R (now in a higher
depth, so it is easier) and so on. It is easy to observe that when there exists
such ordering and when the attribute s; can be bubbled into both children of
CR, then there exists such ordering with s; at the first place, so we cannot
lose track by this greedy algorithm. We will find this ordering in a following
way: we try all attributes of S to be at the first place in this ordering. And if
at least one succeeded, then we will continue with the same approach again
until S is empty.

Now, we will continue with our example from the previous section. The initial
situation is shown in Figure 4.14. This tree is given as the argument T'ree
of the JoinSucceeded function. Remaining two arguments are nodes v; and
v9. In this situation, the common root is the root of the T'ree. Definitions
of nodes v; and v, are different only in the value of the variable A; (= the
variable corresponding to the common root). The list S has two elements
— Ay and As. The variable As is not able to be moved to both children of
the common root (the function CanBubbleToCRPlusOne fails for As), but
As can be moved to both children of the common root and then we may use
the parent-child exchange operation with the common root. The rationale
will be shown in the subsection 4.3.5.

In Figure 4.16, there is one inner iteration of the JoinSucceeded function
shown (one pass through steps 3 to 5 of the JoinSucceeded function). After
this iteration, A is removed from the list S. Now, the list S consists of
the only one item As and the common root of nodes v; and vy is one level
deeper. The second inner-iteration (step 3) of this procedure makes the
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Figure 4.16: One inner-iteration of the JoinSucceeded function. The function
CanBubble ToRoot converts the tree in Figure 4.14 to the tree in this figure on
the left and the PCE operation finishes moving the common root to deeper
position — the result is on the right.

nodes v; and vy to be neighbours by one parent-child exchange (the function
CanBubbleToCRPlusOne returns immediately true without rearranging the
tree). This situation is shown in Figure 4.17 on the left.

Figure 4.17: The second inner-iteration of the JoinSucceeded function. After
step 3, nodes vy and vy are neighbours (on the left). After the step 5 of the
JoinSucceeded function, two vertices are pruned; moreover, we have obtained
the optimal tree (on the right).

The step 5 of this function prunes leaves v; and vy. Because of all conditional
probabilities assigned to leaves p; are now different, there is no pair of leaves
to combine in the Optimise Tree procedure and we have obtained the optimal
tree (see figure 4.17 on the right).
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4.3.5 Functions CanBubbleToCRPlusOne,
CanBubbleToNode

Functions CanBubbleToCRPlusOne and CanBubbleToNode are shown in Fig-
ure 4.18.

In order to make a parent-child exchange operation with C'R, we need to
bubble some variable s into both children of C R. We can bubble the attribute
s to the node node (the child of C'R) only if s is in all branches from node to
leaves — then we can find the node v where s is in the maximal depth. Note
that the neighbour of v must also define a split by s (it cannot be in a lower
depth - s would repeat for v, and it cannot be in a higher depth — v is in the
maximal depth — and we assume that s is in all branches). Therefore, we can
apply PCE operation to vertices v, the neighbour of v and their parent.

In our example, we have used this function(s) several times. In all cases
except one, the variable which was required to bubble to a particular node
was already in that node, so M (the set of all vertices which define a split
by varname is a subtree defined by node node) had only 1 item, no ”while”
was executed and the function returned True. The only situation in our
example where M had more than 1 item was when we need to move A, to
both children of the root (the situation in Figure 4.14). There was the only
one parent-child exchange which was done in the CanBubble ToNode function.
Note that in a described situation, the variable A3 was unable to be moved
to the left child of the root, because it was not included in every branch from
the left child to leaves. Formally, M had contained the only item with the
variable A3z (so "while” did not applied), but it was not in the root so the
step 4 returned False.

4.3.6 Correctness of the Algorithm

In this subsection, we show the theoretical correctness of the algorithm Find-
OptimalTree. To be more specific, we will assume the strong faithful distri-
bution and we will show that the optimal decision tree will be found. To
do so, we will use lemmas and theorems that we have proven in previous
sections.
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Function CanBubbleToCrPlusOne(s,C R,vy,vs)

1. Return ~ CanBubbleToNode(s,Left ~ Child  Of CR)  And
CanBubbleToNode(s,Right Child Of C'R)

End Function

Function CanBubbleToNode(varname,node)

1. M:=0, For Every branch from node to the leaf, find a node m, which
defines a split by varname and its depth (distance) from node, M:=M
U{m} (If there is for any branch no such node, Then Return FALSE,
Ezit)

2. While M contains more than 1 item

(a) M'= items of M with maximal depth in M

(b) find my, my € M’, which are neighbours (have the same parent).
If such nodes do not exist Then Return FALSE, Exit

(¢) PCE(my,mq,Parent m; and ms)
3. Wend

4. If varname in node then Return True else Return False

End Function

Figure 4.18: Function CanBubbleToCRPlusOne, Function CanBubbleToN-
ode
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Theorem 21 Let P be a strong faithful distribution. We will apply the Find-
OptimalTree to this distribution. Let T} be a tree which is the result of the
GrowTree procedure and T be the tree which is a result of the FindOptimal-
Tree procedure. Then,

e the tree T represents P,

o the tree T is the optimal tree (which represents P).

Proof. We know that T} represents P — it is Lemma 13. So we need to
prove that the procedure OptimiseTree finds the optimal tree T' from the
tree T which represents the distribution P. We know that P satisfies the
weak faithfulness for decision trees (it follows from the fact that P satisfies
the strong faithfulness), so there exists the only one optimal decision tree
equivalence class.

Moreover, Corollary 10 suggests that it is sufficient to find a tree with leaves
w; with assigned different conditional probabilities P(Ag|Cy,).

Now, we will show that for every tree T; which represents the distribution P
and is not optimal, we are able to get the tree T;,; which also represents P
and which has the lower number of leaves. After a finite number of steps, we
will get the optimal tree.

So, let us assume that 7; is not optimal (otherwise we are done). We claim
that the algorithm is able to choose the appropriate pair of nodes vy, va, to
find a sequence of parent child exchanges (PCEs) and to prune these nodes.
Assume for a contradiction that the algorithm is not able to do so for any
pair of leaves (denote this assumption as B). We will show for a contradiction
that there exists at least one pair of leaves with this property.

Let w;, i =1,2,...,m' be all leaves of T; and C; conditions assigned to corre-
sponding leaves. Let G, G, ..., G, be groups of leaves such that for every
pair of leaves (vs,v4), there is P(Ao|C3) = P(Ao|Cy) if and only if v and v,
belong to the same group G;. Let G, be a group with at least two leaves
(if all groups have one leaf, all probabilities P(A,|C;) are different and we
have the optimal tree). Observe that due to the weak faithfulness (and the
existence of the decision tree defining the weak faithfulness T,,), the group
G is represented by the only one leaf in the decision tree defining weak faith-
fulness.
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First we will show that there exist two leaves vs, vg of T; which can be neigh-
bours in some tree (so they satisfy the ”continue/fail condition”). As it
follows from Lemma 14, there exists a sequence of PCEs and prunes which
results in the optimal tree, so all leaves in G; are pruned into one leaf. The
first pair of the original G; which would be pruned in this theoretical se-
quence is the pair vs, vg of leaves which can be neighbours in some decision
tree (moreover, there exists a sequence which (applied to T;) makes these
nodes to be neighbours).

Now, we have to be more specific. From the proof of Lemma 14, we know
that there exists a sequence of parent-child exchange and prune operations,
where in the first phase we use only parent child exchanges (PCEs) and in the
second phase, we use only prunes. Let Tp be a tree which is a result of the
first phase (we have used only PCEs, so conditions assigned to leaves remain
unchanged). In this tree, there exist two neighbouring leaves (denote them
vy and vg) with the same conditional probability P(Ag|C.,,) = P(Ap|Cl).
So there exists a sequence of PCE operations, which makes v; and vg leaves.
This property (we will call it Property Q) will be used later in this proof.

Let C'R be the common root of v; and vg in the T;. Let S be a list from the
procedure JoinSucceeded. Assume without loss of generality that no variable
from S can be moved to both children of the C'R (without loss of generality
— if any variable can be moved, so move it there, do PCE with the CR and
continue with this until no variable from S can be moved to both children
of the CR). If S is empty, then v; and vg are neighbours and can be pruned
— the contradiction with the assumption B. If S is not empty, assume the
subtree of T; defined by C'R and all its children of any level (denote it T¢og).

Now, we will examine two alternatives which can occur (in order to "move
variables down”) and then we mention one more possibility — whether it
would help to introduce some variables above the CR into the subtree T¢g.
So look at the alternatives. The first alternative is that at least one variable
of S'is in all branches of the subtree (denote it A,;). In this situation, we can
move Ay to the root (we find nodes with a split by A,y in a maximal depth
and which are neighbours and we apply PCE with their parent recursively
until A,y is in the root of Tor — repeatedly used an easy idea which was a core
of the proof of Lemma 17). That is the contradiction with the assumption
that no variable of S can be moved into the root.
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The second alternative is that no variable of S is in all branches of Tog. So
look at the tree T p, which can be obtained from 7; by a sequence of PCE
operations (Property Q). Now, we will show for the contradiction that such
sequence does not exist. We look what this sequence does with C'R. To make
v7 and vg neighbours, we need to have at least one variable from S to be in
all branches (it would be moved above the C'R in our theoretical sequence,
so it must be in all branches). So this is a contradiction with assumption B.

Now we examine one more chance how could we make v; and vg neighbours
(and we will show that it does not work) — we will try to introduce some
new variables to the subtree Tog (to the list S) from the remaining parts of
the tree (the set of variables to be shifted up would be S’, where S C 5’).
But, in a new subtree of C'R, we have introduced only variables which comes
originally from upper levels that C'R, so no new splits by any element of S
is introduced under CR (due to non-repeating variables on every path to
the leaf). The only possibility for this solution to work is that we can move
some element of the original S above the C'R But we can move just newly
introduced variables, i.e. variables from S’\S (after applying discussion in
alternative 1), because there still exists for every element of s € S at least one
leaf which does not have s in its condition (PCE does not change condition
assigned to leaves). So such sequence cannot exist and this is a desired
contradiction with assumption B.



Chapter 5

Tests of Proposed Algorithm
on Data

5.1 Reconstructing Known Tree From Data

This section describes experiments with the proposed algorithm. We have
tried to generate data records randomly from several trees (all possible tree
structures from the smallest ones — these ones are included as subtrees in
larger trees) and we have compared results — which trees were obtained by
tested algorithms from such generated data. There were compared two al-
gorithms — both started with a decision tree learned by CART (possibly
overfitted). The first one uses only the post pruning (denoted by ”"CART-
PO” — prune only) and the second one uses prune and parent child exchange
operations as proposed in previous sections (denoted by "CART-PP”).

Note that properties of the algorithm are proven for a distribution only. For
a distribution, two neighbouring leaves can be pruned if their proportions
of the target variable are the same. For a dataset, there is a statistical test
used. This test is based on hypothesis that both proportions are the same.
Due to proven properties for a distribution, we have tested the data which
are big enough, or properties of the algorithm where number of observations
tends to infinity respectively. The main question (to which should these tests
reply) is whether we are able to achieve a good reconstruction at least in the
situation where data are large enough.

91
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We have tested several tree structures and categorised them into ”patterns”.
The pattern means here a structure of a probability distribution (what will
equal to what — we will generate a fictive full tree where some leaf probabili-
ties p; equal to some other ones). The original tree structure, the probability
distribution and results of the comparison of these two algorithms (the first
— the original post-pruning algorithm and the second — advanced by parent-
child exchanges) will be shown for each pattern.

There were six tree structures (in ten patterns) tested. Patterns (tree struc-
tures) was selected in a following way: construct six smallest decision trees
(logically same trees are treated as one type — for example, when the tree
has only two splits — one split in the root and the second split in the left leaf,
we treat it as the same as it would have the second split in the right leaf;
changing variable names (ordering) is also ignored).

There are several reasons for choosing the data with few attributes only.
First, large datasets include this data as subtrees. Second, having smaller
number of attributes with fixed dataset size, there is a bigger chance on
pruning two (originally not neighbouring) leaves. Note that this may look
as finding trees where our algorithm works better, but honestly we want to
know whether our algorithm can achieve significantly better results at least
for data which are very large. This allows us to test our algorithm on rela-
tively small datasets.

For every pattern, we introduce how was this pattern generated (a source dis-
tribution description will be provided) and brief results which shows numbers
of correctly reconstructed trees.

The first subsection shows trees where results of both algorithms should be
similar (Pattern A, Pattern B) — because the full tree is the optimal one for
them (so they cannot be improved). In the second subsection (for patterns
1 to 4), results should be different.

Tree structures and patterns are shown in Figure 5.1. For patterns 1 to 4,
we have tried two alternatives (for example, pattern 1 and 1b), which differs
only in probability tables — for leaves, where should be the same proportion
of the target variable in a full tree (i.e. leaves of the full tree, which are
coalesced in the optimal tree), "non-b” have also the same expected size of
this leaf. Note that for every combination of the pattern, the algorithm and
the dataset size, there were generated 8 samples of data.
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Figure 5.1: Six tree structures, from which were tested ten patterns: Pattern
A, Pattern 1+1b, Pattern B, Pattern 2+2b, Pattern 34+-3b and Pattern 4-+4b

In tests, we have tried more dataset sizes, from 300 to 30,000 observations
in a dataset. We have also used test sets (with size about 1/3 of the orig-
inal dataset and we have evaluated the prediction accuracy. This accuracy
was different only exceptionally (and not biased to prefer either algorithm),
therefore the comparison of prediction accuracies is not shown here. Due to
practical application purposes, we will closely focus on bigger dataset sizes.

5.1.1 Test design

We will look at the test design in a more detail. We have tried to test, what
is the quality of the reconstruction of the given tree by the tested algorithm.
First, we have tried to generate the data from the known tree, then we have
tried to execute the algorithm and then compare the result of the algorithm
with the original tree. This test was executed several times for both tested
algorithms.

To be more specific, for every individual pattern and for a given algorithm,
the test schema in Figure 5.2 was realised.

We will describe individual parts and steps from this figure.
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Figure 5.2: Individual test for a given algorithm and for a given pattern.

1. Decision Tree — a given decision tree. The tree may be derived from
a given pattern. The way to obtain a decision tree (or a probability
table) is the following. The pattern is a template of a probability
table. Probabilities are given by virtual numbers p;. We will generate
p;s randomly. The sum of p; is to be 1. At first, we will generate B;
as a random number between 1 and 100. Next, p; are B; adjusted in a

way that sum of p;s is 1, so we define p; = ZB}E%'

A. Generating random data — we have generated records with respect
to the probability table. So cumulative probabilities were counted and
random number 7 between 0 and 1 (uniformly distributed) was com-
puted. The first record in the probability table which has the cumula-
tive probability greater than or equal to r was selected into the dataset.
This gives us one record into the generated dataset. So we can repeat
it how many times we need. Note that generating one record is nothing
else than generating records with a given probability of occurrence.

2. Dataset — set of records from Step A.

B. Tree reconstruction — the tested algorithm was executed. The result
of this algorithm will be called the reconstructed tree.
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3. Reconstructed tree — the result of the tested algorithm

C. Comparison —the reconstructed algorithm was compared with the orig-
inal tree. We have checked the number of leaves and variables in inner
nodes. We define that the reconstruction of the tree is good, if both
trees are one node trees or roots of both trees have the same variable
Apg and their left subtrees (i.e. defined by Agr = 0) are the same and
right subtrees are the same. Note that we have checked also numbers
of nodes of reconstructed trees. The good reconstruction requires that
both trees have the same number of nodes. Conversely, the same num-
ber of nodes does not necessarily ensure that reconstruction is good.

The entire test was executed eight times for both tested algorithms (see
Figure 5.3).

8 x for CART — PO
8 x for CART — PP

1 Deczion e

L y
A. Generating random data
¥

C. Comparison

2 Datarat

B. Tree reconstruction|

Dataset size | Count of resulting trees with |
Dataset size | Count of resulting trees with
3 nodes [ 5 nodes [ 7 nodes
300 3 4(2)

1000 2 1(3)
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Figure 5.3: The complete test for a given pattern.

The number of good reconstructions for each algorithm is the main result,
therefore this number is included in both brief and detailed results.
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Diataset size Pattern 1
CART-PO | CART-PP
300 2 2
L0 5

v

out of 8

Figure 5.4: Brief results. We may see the number of good reconstruction for
a given pattern and every tested dataset size. The maximal number of good
reconstructions is 8.

Dataset size | Count of resulting trees with
2 nodes | 5 nodes | 7 nodes
300 3 4(2) 1
1000 2 4(3) 2

Figure 5.5: Detailed results. We may see sizes of reconstructed trees. In
this example, the original tree has 5 nodes, so the column ”5 nodes” has one
extra number in parentheses — this is the number of good reconstructions.

Brief results are shown in Figure 5.4. Detailed results include sizes of recon-
structed trees. Detailed results are explained in Figure 5.5. These results are
not shown in this chapter, they are in Appendix C (they are referenced from
this chapter). Detailed results are shown for a given pattern and a given
algorithm. Two tables of detailed results correspond to one table of brief
results.

For patterns 1 to 4, we have two alternatives. We call them ”b” and "non-b”
(e.g. we have patterns 1 and 1b, the pattern 1 is called "non-b” and the
pattern 1 is called ”b”). The difference is following: we assume the full tree
Tr corresponding to a given probability table (some leaves may have same
probabilities of target). In the "non-b” alternative, we assume that leaves in
Tr which are assigned the same probability have also the same proportion
(the expected number of records). The ”b” alternative does not have this
requirement. We may study the behaviour of the algorithm under (”non-b”
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alternative) and without (”b” alternative) the assumption that the pair of
leaves which is to be pruned has the similar number of records in both leaves.

We should mention also some details about implementation of the growing
a tree and the post-pruning. We have created and used an implementation
which was made only for purposes of evaluation of this algorithm’s proper-
ties. To grow a tree, external software for decision trees was used. We have
tried to improve post-pruning so we have set up parameters for growing in
order to obtain (very) overfitted tree (for example, the minimal size for a
decision tree node was set up to 5 records). Then, the resulting tree was
transferred into our implementation and two post-pruning alternatives were
tested (every alternative was executed on the grown tree obtained from the
external software, not on the result of the second algorithm). The first al-
ternative was pruning only and the second one was pruning and parent-child
exchanges (our algorithm).

We have tried to reconstruct full trees as well as trees which are not full.
For full trees, we expected to achieve a 100% of good reconstructions. These
results can also show the effect of the situation when we have only a very
small number of records in dataset (errors caused by growing — the tree
growing was stopped prematurely and error caused by pruning — two leaves
were pruned due to small number of records and small difference in the target
variable distribution).
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5.1.2 Reconstruction of Full Trees
Pattern A

This pattern is the easiest design of the decision tree. The tree structure is
shown in Figure 5.6 and the distribution is shown in Table 5.1.

Figure 5.6: Pattern A

Table 5.1: Pattern A — probabilities, from which the data was generated

target A, | P
0 0 | ;
1 0 | po
0 L | ps
1 L | pa

We have generated the data 8 times for each Dataset size and we have eval-
uated the number of nodes in target trees (using CART-PO and CART-PP
algorithm), the classification accuracy and the equivalence to original tree.
Note that the classification accuracy was different only exceptionally (in most
cases it was identical, when the difference appeared, sometimes it was a lit-
tle bit better and sometimes a little bit worse for the CART-PP algorithm),
so the classification accuracy is not shown in these results. The number of
equivalent trees (the number of correct reconstructions) is shown in individ-
ual tables. The comparison the CART-PO algorithm with the CART-PP
algorithm for the data generated from ”Pattern A” is shown in Tables C.1
and C.2 in the Appendix C. The brief version of results is shown in Table
5.2.
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Table 5.2: Comparison of CART-PP and CART-PO algorithm, pattern A

Dataset size Pattern A
CART-PO | CART-PP
300 7 7
1000 7 7
3000 8 8
7500 8 8
15000 8 8
20000 8 8
30000 8 8

The reconstructed tree should have 3 nodes, in most cases it has 3 nodes for
both algorithms.

Pattern B

The pattern B is the full tree with 2 variables, so the reconstructed tree
should have 7 nodes (4 leaves plus 3 non-leaf nodes) — see Figure 5.7.

Figure 5.7: Pattern B

The probability distribution, from which the data was generated, is shown

in Table 5.3.
Results for ”Pattern B” are shown in Tables C.3 and C.4 in the Appendix

C. Brief results are shown in Table 5.4.
We may see that both algorithms give similar results.
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Table 5.3: Pattern B — probabilities, from which the data was generated

target A; A | P
0 0 0 |m
1 0 0 P2
0 1 0 | p3
1 1 0 Pa
0 0 1 | ps
1 0 1 | pe
0 1 1 | p;
1 1 1 | ps

Table 5.4: Comparison of CART-PP and CART-PO algorithm, pattern B

Dataset size

Pattern B

CART-PO

CART-PP

300
1000
3000
7500
15000
20000
30000

5
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3
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5.1.3 Reconstruction of Trees which are not full

In this subsection, we will test three patterns (patterns 1 to 3) in two alter-
natives ("non-b” and ”b").

Pattern 1

Pattern 1 has a very easy structure, which is shown in Figure 5.8.

Figure 5.8: Pattern 1

The probability distribution tested is shown in Table 5.5.

Table 5.5: Pattern 1 — probabilities, from which the data was generated

target A; Ay | P
0 0 0 |m
1 0 0 P2
0 1 0 |ps
1 1 0 P4
0 0 1 | m;m
1 0 1 |ps
0 1 1 | ps
1 1 1 | pe

Now we look at results of both algorithms. Brief results are shown in Table
5.6. Full results are shown in Tables C.5 and C.6 in Appendix C.

From these results we may see that the CART-PP algorithm finds in most
cases (for datasets which are big enough) the optimal tree, but the CART-PO
algorithm (the classical CART algorithm) finds a tree with a bad structure,



CHAPTER 5. TESTS OF PROPOSED ALGORITHM ON DATA 102

Table 5.6: Comparison of CART-PP and CART-PO algorithm, pattern 1

Dataset size Pattern 1
CART-PO | CART-PP

300 2 2
1000 3 5
3000 4 7
7500 5 7
15000 4 7
20000 5 8
30000 5 8

which classifies the same, but in a more complicated way. Moreover, the real
structure of data is in many cases hidden for the CART-PO algorithm.

For the CART-PO algorithm, finding a correct/incorrect (more complicated)
tree depends on ”guessing” the correct variable for the root in the first step
of tree learning. If the CART-PO chooses a wrong variable (the other than in
the optimal tree) for the root in a learning phase and a variable on the next
level is significant, the optimal tree can be never found. The CART-PP is
able to fix this problem in the advanced post-pruning phase by parent-child
exchange operations. So correct variable may become the new root and an
additional prune may be available and finally the optimal tree is found.

Pattern 1b

The pattern 1b is only an adjustment of the pattern 1. The only difference
is a way the probabilities are generated. The probability table is shown in
Table 5.7.
The results for the CART-PO algorithm and the CART-PP algorithm are
shown in Tables C.7 and C.8 in the Appendix C. Brief results are shown in
Table 5.8.

We may see again that the CART-PP algorithm finds a real structure of the
tree in 100% of tested cases (for the datasets which are big enough), but the
CART (CART-PO) algorithm does not in approx. 38%.
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Table 5.7: Pattern 1b — probabilities, from which the data was generated

target Ay Ay | P
0 0 O D1
1 0 0 P2
0 10| ps
1 1 0 P4
0 0 1 D5
1 0 1 ;’;—f s
0 1 1 Dé
1 1 1 D7

Table 5.8: Comparison of CART-PP and CART-PO algorithm, pattern 1b

Dataset size

Pattern 1b

CART-PO

CART-PP

300
1000
3000
7500
15000
20000
30000

3
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3
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Pattern 2

This pattern is typical for a real world business data. Two variables are
significant, but for one group of clients is significant the first variable and
for the second group the second variable is significant. This difference is
usually caused by business rules (for example, price lists for two groups) and
it appears in many forms in a real world data. The structure of the tree
for this pattern is shown in Figure 5.9 and the probability table, from which
data were generated, is shown in Table 5.9.

Figure 5.9: Pattern 2

The results are shown in Tables C.9 and C.10 in the Appendix C. Brief
results are shown in Table 5.10.

We can see that the algorithm CART-PP finds the optimal tree in more than
90% cases, but the algorithm CART-PO finds the optimal tree in only ap-
proximately 50% cases.

Pattern 2b

The pattern 2b is similar to the pattern 2, the only difference is the prob-
ability table from which the data are generated. The probability table for
the pattern 2b is shown in Tables C.11 and C.12 in the Appendix C. Brief
results are shown in Table 5.11.

Results for the pattern 2b are shown in Table 5.12.

From results, we can see that the algorithm CART-PO generates more in-
optimal trees (with more than 7 nodes) than the algorithm CART-PP do
(for large datasets, the CART-PP algorithm generates inoptimal tree in ap-
proximately 25% of cases, but the CART-PO algorithm in almost 50% of
cases).
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Table 5.9: Pattern 2 — probabilities, from which the data was generated

t arget A 1 A2 A 3 P
0 0 0 0 |m
1 0 0 0 |p
0 1 0 0 |ps
1 1 0 0 P4
0 0 1 0 |ps
1 0 1 0 Pe
1 1 1 0 |ps
0 0 0 1 |p
1 0O 0 1 |p
0 10 1 |pr
1 1 0 1 |ps
0 0 1 1 | ps
1 0 1 1 |pg
0 1 1 1 |ps
1 1 1 1 |ps

Table 5.10: Comparison of CART-PP and CART-PO algorithm, pattern 2

Dataset size

Pattern 2

CART-PO

CART-PP

300
1000
3000
7500
15000
20000
30000

3
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Table 5.11: Pattern 2b — probabilities, from which the data was generated

target Ay Ay As P
0 0 0 0/ p
1 0 0 0| p
0 10 0 D3
1 1 0 0 P4
o 0 1 0/ ps
1 0 1 0 Ps
p.
11 1 0| 2y
0 0 0 1] ps
1 L 0 1] po
0 0 1 1 P11
p
1 0 1 1 p—gpll
0 1 1 1 P12
Pio
1 1 1 1 ng P12

Table 5.12: Comparison of CART-PP and CART-PO algorithm, pattern 2b

Dataset size

Pattern 2b

CART-PO

CART-PP

300
1000
3000
7500
15000
20000
30000

3
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Pattern 3

The pattern 3 is a next tree structure which will be tested. Again, we will use
Pattern3 and Pattern3b alternatives which differs only in probability tables.
The tree structure for both patterns is shown in Figure 5.10.

Figure 5.10: Pattern 3

Probability tables will be no longer shown, their structure can be easily
derived from tables for patterns 1 to 2b. Results for the pattern 3 are shown
in Tables C.13 and C.14 in the Appendix C. Brief results are shown in Table
5.13.

Table 5.13: Comparison of CART-PP and CART-PO algorithm, pattern 3
Dataset size Pattern 3
CART-PO | CART-PP
300 0 3
1000
3000
7500
15000
20000
30000

= = = = N
S ] 00 00 O =

In this more complicated pattern, we can clearly see that the algorithm
CART-PP finds in most cases the optimal tree (for tested data, which are
big enoughm in approximately 90% of cases), but the algorithm CART-PO
finds in many cases an inoptimal tree (for a big data, the optimal tree was
found in only approx. 15% of cases).
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Pattern 3b

Results for the pattern 3b are shown in Tables C.15 and C.16 in the Appendix
C. Brief results are shown in Table 5.14.

Table 5.14: Comparison of CART-PP and CART-PO algorithm, pattern 3b
Dataset size Pattern 3b
CART-PO | CART-PP
300 1 1
1000
3000
7500
15000
20000
30000

O RS
ESJEN BEN BN JURNGH

We can see again, that the algorithm CART-PP finds in many cases the
optimal tree (almost 90% for a big data), but the algorithm CART-PO tends
to find an inoptimal tree (the optimal tree is found in less than 25% cases
for a big data).

Pattern 3 and 3b show a great improvement in finding the optimal tree when
we use the CART-PP algorithm (due to our extension to post-pruning phase).
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Pattern 4

The pattern 4 is the last tree structure, which we will examinated here. The
tree structure, which is common for patterns 4 and 4b, is shown in Figure
5.11.

Figure 5.11: Pattern 4

Result of the reconstruction for the pattern 4 is shown in Tables C.17 and
C.18 in the Appendix C. Brief results are shown in Table 5.15.

Table 5.15: Comparison of CART-PP and CART-PO algorithm, pattern 4
Dataset size Pattern 4
CART-PO | CART-PP
300 0 0
1000
3000
7500
15000
20000
30000

LW W W WMo
S UL Ot Ot D =

We can see again that the algorithm CART-PP finds the optimal tree for
much more samples than the algorithm CART-PO do. For CART-PO, in
less than 40% cases, the optimal tree is found (usually the reason is that the
number of nodes is bigger than the number of nodes in the original tree).
The algorithm CART-PP has more than 50% of optimal trees for a big data.
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Pattern 4b

Again, the only difference of the pattern 4 and the pattern 4b is the prob-
ability table from which data are generated. Results for the pattern 4b are
shown in Tables C.19 and C.20 in the Appendix C. Brief results are shown
in Table 5.16.

Table 5.16: Comparison of CART-PP and CART-PO algorithm, patterns 4
and 4b

Dataset size Pattern 4b
CART-PO | CART-PP

300 0 0
1000 3 3
3000 2 3
7500 4 5
15000 4 4
20000 4 6
30000 4 6

Once again, the algorithm CART-PP shows better reconstruction of the op-
timal tree and the true structure of the data. The algorithm CART-PO
finds the optimal tree in approx. 50% of cases, the algorithm CART-PP in
approximately 65% of cases (both for a big data).

5.1.4 Results summary

We have tried to reconstruct 6 structures of trees, which should cover all
combinations of small trees with a small number of variables (and which are
not only the other arrangement of previous trees, for example, the situation,
where we have only two splits, one in the root and the second one in it child,
we assume that design where the split is in the left child and the design where
the split is in the right child to be the same).

In this experiment, we estimated that two designs (patterns) would have same
results (the success of finding optimal tree) — in situations where the optimal
tree was a full tree, and for four patterns the results could be improved.
Results show that when using the CART-PP algorithm instead of the CART-
PO algorithm, we can find the optimal tree (and the true structure of the
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data) in significantly more cases. For the CART-PO algorithm, in some cases
the randomness influences the chance of finding the optimal decision tree.
The main problem of the original CART algorithm (CART-PO) is when it
chooses a wrong attribute into the node (wrong=in the optimal tree, the
other attribute is used in this context). Then it cannot be repaired except
the situation that the entire subtree of this node is pruned. Otherwise, post-
pruning never fix this problem. The CART-PP algorithm is able to rearrange
attributes in nodes, so we can find the optimal tree in much more cases. The
summary of results is provided in Figures 5.12 and 5.13.

Note that we can estimate how can the data size influence the number of
correctly reconstructed trees (due to the insignificance in split/prune tests
for small data) from full tree patterns (pattern A and pattern B). Results
show that data are big enough for sample size 3,000 and more.

Pattern A Pattern B

. . - .CART-RO - -+« SCART-RO
——CART-RR ———CaRT-AR

T T T T T T T T T T T T
300 1000 3000 7300 15000 20000 30000 A0 1000 3OmM 7500 15000 000 3mm
hwti Catmwtizs

trees
[ e ]
trees
O~ lRWesom =@

Comectly necorstracted
Comectly neconstracted

Figure 5.12: The comparison of the CART-PP against the CART-PO algo-
rithm (full trees — patterns A and B).
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Figure 5.13: The comparison of the CART-PP against the CART-PO algo-
rithm (trees which are not full — patterns 1 to 4b).
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5.2 Comparison On Real Data

The proposed algorithm was tested on a real business data — a MTPL claim
data (the simplified version with 3 binary predictors and one binary target
only). Attributes was

e claim occurred (target)
e personal car/truck
e measure attribute 1 (based on vehicle weight)

e measure attribute 2 (based on engine size)

Analysed data were created by a particular sampling. The data in an aggre-
gated form are shown in Table 5.17. More details about this data and the
preparation method cannot be provided.

Table 5.17: Insurance data in the aggregated form

Is truck? | High weight | High engine size | Is claim? | Count(*)
0 0 0 0 977
0 0 0 1 786
0 0 1 0 17
0 0 1 1 25
0 1 0 0 256
0 1 0 1 284
0 1 1 0 301
0 1 1 1 456
1 0 0 0 11
1 0 0 1 28
1 0 1 1 1
1 1 0 0 1
1 1 0 1 )
1 1 1 0 47
1 1 1 1 137

The algorithm CART-PO have found the tree with 5 leaves, the algorithm
CART-PP have found the tree with 4 leaves with identical prediction accu-
racy on the test set. Originally, the attribute measure 2 (based on engine
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size) was in the root. Algorithm CART-PP proposed to the root the at-
tribute, which means personal car/truck, which we had expected and what
is generally expected and used by business. Results for this real data ex-
periment are summarized in Table 5.18 and resulting trees are shown in the
Figure 5.14.

Table 5.18: Results on real data. Both trees have the same prediction accu-
racy on the test set.

Algorithm Number of leaves | Variable in the root
CART (CART-PO) 5 High_engine_size
CART-PP 4 Is_truck
High engine size Is truck
Is truck | |Is truck > High engine size| ()

S b Weight] () () [weight
55 dh

Figure 5.14: Resulting trees for the insurance data, the result for the CART-
PO algorithm is on the left, the result for the CART-PP algorithm is on the
right.

Note that we have tried this algorithm on several parts of UCI ML Datasets.
Due to binary data requirement, analysed data (predictors) was prepared into
binary form. For many predictors, rarely any non-neighbouring pair could
be joined. And when so, the resulting tree was the same as when we have
used pruning only. When we have tried to use only subset of predictors, it
was observed that some more post-pruning operations could improve results —
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sometimes the ”expansion” (the opposite operation for the prune operation —
it increases the number of leaves) could be helpful. But using the expansion,
we need to be careful — we can get in the loop (expansion — prune cycle or
some more complicated cycle) and it is not guaranteed that we will get the
smaller tree than the original tree before post-pruning. So this issue is a part
of the future work.



Chapter 6

Conclusions and Future Work

6.1 Results achieved

We have introduced the extension into the post-pruning phase of the decision
tree algorithm. We have studied this extension for a distributions and for
real data. It was shown that the algorithm finds the optimal decision tree for
faithful distributions. This algorithm is based on a theoretical basis, we have
proved that it works correctly for the distribution under the assumption of
faithfulness, in contrast with traditional methods, where the optimal result
is not guaranteed even for the distribution. The proposed algorithm gives
magnificently better results when reconstructing the known decision tree from
data (where can be easily measured whether the result is correct or not). The
algorithm has also succeeded on a real business data, where the better tree
with the identical prediction accuracy was found. Moreover, the tree found by
the proposed algorithm better reflects the business meaning of results. The
algorithm provided is polynomial in a number of leaves of the tree which is
the result of the growing phase and it is the improvement in comparison with
the exponential complexity of the trivial exhaustive search algorithm. Note
that the algorithm is not necessarily polynomial in the number of variables.
In contrast to surprising results on a real business data, the algorithm in
proposed form was also tested on some datasets from the UCI-ML Data
Repository (selected attributes were prepared to their binary form) and both
CART-PO and CART-PP result in the same tree. Nevertheless, results on
the simulated data and the real business data have shown the improvement.

116
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6.2 Future work

Having completed the core skeleton of the algorithm and the implementation
to be able test this algorithm, the following items may extend this work

e Fine-tune the algorithm to achieve even better results, concentrating
on a real data.

e Detailed study of the algorithm complexity and its possible improve-
ments.

e Extend the algorithm to non-binary discrete variables and continuous
variables in a more sophisticated way (not only recoding them into
binary variables).

e Develop a routine applicable implementation of the proposed algorithm.
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Appendix A

Notation Quick Reference

A.1 Tree and Graph Theory

e the two vertices v, and v; are neighbour nodes; there is an another pair
of neighbour nodes in our tree

e v, is a root node

e vy, U, vy are leaf nodes

e v, is node in depth 0, v;,v; are nodes in depth 1, vy, v; are nodes in
depth 2; depth is a distance of vertex from root node

e v, and v; are children of v,; vy, vy are children in depth 2 of v,; v, is a
parent of vy, or v,
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A.2 Decision Tree Formal Description

T = (T, A m,s)

T = (V,E) is a tree, V is a vertex set, E is a node set

— Uy, Vj, ... are nodes, or vertices
— V/(T) is an abbreviation for node set of a tree T

— E(T) is an abbreviation for edge set of a tree T'

o A= (Ag, Ay,..., A,) is a variable set, Ay,..., A, are input variables

Ag is target variable

function m assigns variable to each internal (i.e. non-leaf) node, this
variable defines a split

function s assigns 0 or 1 to each edge e = (vy,v9), this value defines
value of the split variable in node v,



Appendix B

Terminology

Binary Decision Tree — see Decision Tree, all splits are binary.

Binary Tree — a structure of a decision tree (as a graph in the graph the-
ory), i.e. the decision tree without variables and their values, only
nodes and edges are present. The exact definition can be found on
page 51 and overview of the Binary Tree can be found in Section A.1
on page 121.

Capacity of the Classifier — see VC' dimension.
C4.5 —the most popular free implementation of the ID3 algorithm (see IDS3).
C5.0 — the most recent implementation of the ID3 algorithm (see 1D3).

CART - the algorithm for decision trees (decision tree induction) which is
based on statistical methods and which usually uses post-pruning.

CPD Equivalence of Decision Trees —two decision trees are CPD equiv-
alent for a given CPD if their tree CPDs are identical. The exact
definition can be found on page 55.

Condition Assigned To Decision Tree Node —a combination of attributes

and their values which defines the set of records belonging to a partic-
ular node.

CPD - Conditional Probability Distribution. See page 49.
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CRISP-DM - CRoss-Industry Standard Process for Data Mining. A method-
ology used in data mining projects.

Decision Tree — a structure used in the Decision Tree Induction technique.
This structure represents dependencies in order to better estimate the
value of the target variable. The exact definition can be found on page
52 and overview of the Decision Tree can be found in Section A.2 on
page 122.

Decision Tree Defining Weak Faithfulness — the decision tree, for which
all leaves have assigned different values of the CPD. The exact defini-
tion can be found on page 64.

Decision Trees — a classification technique, used for data descriptions, clas-
sifications and predictions.

Equivalence of Decision Trees — two decision trees are equivalent if they
have same leaves (defined by identical variable combinations), the only
difference may be in the inner structure.

Faithfulness — see Strong Faithfulness.

Flat Table — a table which is the input for the data mining procedure.
Details can be found in subsection 1.7.

Full Tree — decision tree, where every leaf has all variables in the condition
assigned to this leaf.

CHAID - the algorithm for decision tree induction which was originally
used for the pattern recognition. It usually uses pre-pruning.

ID3 — the algorithm for decision tree induction which is based on the infor-
mation theory. It usually uses post-pruning.

Optimal Decision Tree — a decision tree which represents a given distri-
bution and it has the smallest number of leaves from all trees which
represent the same distribution.

Parent-Child Exchange — an operation on a decision tree which locally
changes the inner structure of the decision tree, leaving the leaves’
definition untouched. The exact definition can be found on page 61.
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Pre-pruning — a method for reducing the decision tree size in order to
prevent overfitting. Also known as Stopping Rules. It may be under-
stood as the set of rules which decides whether growing of the tree may
continue or not.

Probability measure — the generalization of the (joint probability) distri-
bution to all subsets of {0, 1}"!.

Post-pruning — a method for reducing the decision tree size in order to
prevent overfitting. First, the tree is grown. Then, the prune operation
(see Prune) is applied repeatedly (until no pair of neighbouring leaves
can be pruned).

Prune - an operation on a decision tree which combines two neighbouring
leaves with same conditional probabilities assigned to these leaves. The
exact definition can be found on page 59.

Representing distribution — the decision tree represents the distribution
if the tree CPD is the same as a given CPD.

Strong Faithfulness — the property of the distribution. It has to satisfy
the Weak faithfulness (see Weak Faithfulness) and one more condition.
The exact definition can be found on page 65.

Tree CPD - a conditional probability distribution, where CPD for a com-
bination of values is defined by CPD assigned to corresponding leaf of
a given decision tree.

VC dimension — abbreviation of the Vapnik-Chervonenkis Dimension. It
shows how much information can the given classifier (for example, de-
cision trees) store.

Weak Faithfulness — the property of the distribution. For the weak faith-
ful distribution, there exists a tree defining weak faithfulness (see Tree
Defining Weak Faithfulness) which represents our distribution. The
exact definition can be found on page 64.



Appendix C

Detailed results of algorithm
testing

This appendix shows sizes of trees, which were reconstructed from data,
which were generated from known structures. Details about source data
structures and the way of generating data can be found in Section 5.1.

For patterns A and B, only the size of reconstructed tree is shown. There
is a correct size shown in bold. For these two patterns, the full tree is the
optimal one, so every tree with the correct number of leaves is the tree, from
which data were generated.

For remaining 8 patterns, there are shown sizes of the tree for both algo-
rithms, the correct size does not ensure that the correct tree was recon-
structed. In the column with the number of trees with the correct size, there
is additional information, which is in parentheses in bold and which means
how many trees have the correct structure (the number of correctly recon-
structed trees).

The detailed description of these tables can be found in Subsection 5.1.1.
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Table C.1: Pattern A — Results of reconstruction, algorithm CART-PO

Dataset size | Count of resulting trees with
1 node 3 nodes

300 1 7

1000 1 7

3000 0 8

7500 0 8
15000 0 8
20000 0 8
30000 0 8

Table C.2: Pattern A — Results of reconstruction, algorithm CART-PP

Dataset size | Count of resulting trees with
with 1 node 3 nodes

300 1 7

1000 1 7

3000 0 8

7500 0 8
15000 0 8
20000 0 8
30000 0 8

Table C.3: Pattern B — Results of reconstruction, algorithm CART-PO

Dataset size Count of resulting trees with
with 1 nodes | 3 nodes | 5 nodes | 7 nodes

300 0 0 3 5
1000 0 0 2 6
3000 0 0 0 8
7500 0 0 0 8
15000 0 0 0 8
20000 0 0 0 8
30000 0 0 0 8
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Table C.4: Pattern B — Results of reconstruction, algorithm CART-PP

Dataset size Count of resulting trees with
with 1 nodes | 3 nodes | 5 nodes | 7 nodes

300 0 0 5 3
1000 0 0 3 5
3000 0 0 0 8
7500 0 0 0 8
15000 0 0 0 8
20000 0 0 0 8
30000 0 0 0 8

Table C.5: Pattern 1 — Results of reconstruction, algorithm CART-PO

Dataset size | Count of resulting trees with

3 nodes | 5 nodes | 7 nodes
300 3 4(2) 1
1000 2 4(3) 2
3000 1 4(4) 3
7500 0 5(5) 3
15000 0 4(4) 4
20000 0 5(5) 3
30000 0 5(5) 3

Table C.6: Pattern 1 — Results of reconstruction, algorithm CART-PP

Dataset size | Count of resulting trees with

3 nodes | 5 nodes | 7 nodes
300 3 5(2) 0
1000 2 6(5) 0
3000 1 7(7) 0
7500 0 7(7) 1
15000 0 7(7) 1
20000 0 8(8) 0
30000 0 8(8) 0
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Table C.7: Pattern 1b — Results of reconstruction, algorithm CART-PO

Dataset size | Count of resulting trees with

3 nodes | 5 nodes | 7 nodes
300 3 5(3) 0
1000 0 8(5) 0
3000 0 7(5) 1
7500 0 6(5) 2
15000 0 5(5) 3
20000 0 5(5) 3
30000 0 5(5) 3

Table C.8: Pattern 1b — Results of reconstruction, algorithm CART-PP

Dataset size | Count of resulting trees with

3 nodes | 5 nodes | 7 nodes
300 3 5(3) 0
1000 0 8(5) 0
3000 0 8(8) 0
7500 0 8(8) 0
15000 0 8(8) 0
20000 0 8(8) 0
30000 0 8(8) 0
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