Politická ekonomie
Politická ekonomie
Prague Economic Papers
University of Economics, Prague

Prague Economic Papers - Articles first published online

Predictive Performance of Customer Lifetime Value Models in E-Commerce and the Use of Non-Financial Data

DOI: https://doi.org/10.18267/j.pep.714

[full text (PDF)]

Pavel Jasek, Lenka Vrana, Lucie Sperkova, Zdenek Smutny, Marek Kobulsky

Published online: 12. 3. 2019

The article contributes to the knowledge of customer lifetime value (CLV) models, where extensive empirical analyses on large datasets from online stores are missing. Based on this knowledge, practitioners can decide about the deployment of a particular model in their business and academics can design or enhance CLV models. The article presents predictive performance of selected CLV models: the extended Pareto/NBD model, the Markov chain model, the vector autoregressive model and the status quo model. Six large datasets of medium and large-sized online stores in the Czech Republic and Slovakia are used for a comparison of the predictive performance of the models. Online stores have annual revenues in the order of tens of millions of euros and more than one million customers. The comparison of CLV models is based on selected evaluation metrics. The results of some of the models which use additional non-financial data on customer behaviour – the Markov chain model and the vector autoregressive model – do not justify the effort which is needed to collect such data. The advantages and disadvantages of the selected CLV models are discussed in the context of their deployment.

Keywords: CLV Models, E-commerce, forecasting, methodology, Online Marketing, Online Marketing Management, Online Shopping

JEL Classification: C53, C55, M21, M31

References:

Adomavicius, G., Tuzhilin, A. (2005). Toward the Next Generation of Recommender Systems:

a Survey of the State-of-the-art and Possible Extensions. IEEE Transactions on Knowledge

and Data Engineering, 17(6), 734–749, http://doi.org/10.1109/TKDE.2005.99

Jasek, P., Vrana, L., Sperkova, L., Smutny, Z., Kobulsky, M. (2018). Modeling and application

of customer lifetime value in online retail. Informatics, 5(1), no. 2. https://doi.org/10.3390/

informatics5010002

Batislam, E. M., Denizel, M., Filiztekin, A. (2007). Empirical Validation and Comparison of Models

for Customer Base Analysis. International Journal of Research in Marketing, 24(3), 201–209,

http://doi.org/10.1016/j.ijresmar.2006.12.005

Bierens, H. J. (2004). VAR Models with Exogenous Variables. [Retrieved 2018-09-20] Available at:

http://www.personal.psu.edu/hxb11/EasyRegTours/VAR_Tourfiles/VARX.PDF

Bradlow, E. T., Gangwar, M., Kopalle, P., Voleti, S. (2017). The Role of Big Data and Predictive

Analytics in Retailing. Journal of Retailing, 93(1), 79–95, http://doi.org/10.1016/j.

jretai.2016.12.004

Burcher, N. (2012). Paid, Owned, Earned: Maximising Marketing Returns in a Socially Connected

World. Philadelphia: Kogan Page. ISBN 978-0749465629.

Castéran, H., Meyer-Waarden, L., Reinartz, W. (2017). Modeling Customer Lifetime

Value, Retention, and Churn, in Homburg, C., Klarmann, M., Vomberg, A.,

eds., Handbook of Market Research. Cham: Springer, pp. 1–33, http://doi.

org/10.1007/978-3-319-05542-8_21-1

Centre for Retail Research. (2017). Online Retailing: Britain, Europe, US and Canada 2017.

[Retrieved 2018-09-20] Available at: http://www.retailresearch.org/onlineretailing.php

Chamberlain, B. P., Cardoso, A., Bryan Liu, C. H., Pagliari, R., Deisenroth, M. P. (2017). Customer

Lifetime Value Prediction Using Embeddings, in Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. New York: ACM,

pp. 1753–1762, http://doi.org/10.1145/3097983.3098123

Chang, W., Chang, C., Li, Q. (2012). Customer Lifetime Value: A Review. Social Behavior and

Personality, 40(7), 1057-1064.

Chiang, L. L. L., Yang, C. S. (2018). Does country-of-origin brand personality generate retail

customer lifetime value? A Big Data analytics approach. Technological Forecasting and

Social Change, 130, 177-187, http://dx.doi.org/10.1016/j.techfore.2017.06.034

Colombo, R., Jiang, W. (1999). A Stochastic RFM Model. Journal of Interactive Marketing, 13(3),

2–12, http://doi.org/10.1002/(SICI)1520-6653(199922)13:3<2::AID-DIR1>3.0.CO;2-H

Damm, R., Monroy, C. R. (2011). A Review of the Customer Lifetime Value as a Customer

Profitability Measure in the Context of Customer Relationship Management. Intangible

Capital, 7(2), 261–279, https://doi.org/10.3926/ic.2011.v7n2.p261-279

Donkers, B., Verhoef, P.C., De Jong, M.G. (2007). Modeling CLV: A test of Competing Models

in the Insurance Industry. Quantitative Marketing and Economics, 5(2), 163–190,

http://doi.org/10.1007/s11129-006-9016-y

Estrella-Ramón, A. M., Sánchez-Pérez, M., Swinnen, G., VanHoof, K. (2013). A Marketing View

of the Customer Value: Customer Lifetime Value and Customer Equity. South African

Journal of Business Management, 44(4), 47–64, https://doi.org/10.4102/sajbm.v44i4.168

Fader, P. S., Hardie, B. G. S. (2009). Probability Models for Customer-Base Analysis. Journal

of Interactive Marketing, 23(1), 61–69, http://doi.org/10.1016/j.intmar.2008.11.003

Fader, P. S., Hardie, B. G. S. (2013). The Gamma-Gamma Model of Monetary Value. [Retrieved

2018-09-20] Available at: http://www.brucehardie.com/notes/025/gamma_gamma.pdf

Fader, P. S., Hardie, B. G. S. (2001). Forecasting Repeat Sales at CDNOW: A Case Study. Interfaces,

31(3), S94–S107, http://doi.org/10.1287/inte.31.3s.94.9683

Fader, P. S., Hardie, B. G. S., Lee, K. L. (2005). Counting your Customers the Easy Way:

An Alternative to the Pareto/NBD Model. Marketing Science, 24(2), 275–284,

http://doi.org/10.1287/mksc.1040.0098

Ferrentino, R., Cuomo, M. T., Boniello, C. (2016). On the Customer Lifetime Value: a Mathematical

Perspective. Computational Management Science, 13(4), 521–539, http://doi.org/10.1007/

s10287-016-0266-1

Gladya, N., Baesensa, B., Crouxa, C. (2009). A Modified Pareto/NBD Approach for Predicting

Customer Lifetime Value. Expert Systems with Applications, 36(2), 2062–2071,

http://doi.org/10.1016/j.eswa.2007.12.049

Gupta, S., Hanssens, D., Hardie, B., Kahn, W., Kumar, V., Lin, N., Ravishanker, N., Sriram, S. (2006).

Modeling Customer Lifetime Value. Journal of Service Research, 9(2), 139–155, http://doi.

org/10.1177/1094670506293810

Haenlein, M., Kaplan, A. M., Beeser, A. J. (2007). A Model to Determine Customer Lifetime Value

in a Retail Banking Context. European Management Journal, 25(3), 221–234, http://doi.

org/10.1016/j.emj.2007.01.004

Haenlein, M., Kaplan, A. M., Schoder, D. (2006). Valuing the Real Option of Abandoning

Unprofitable Customers When Calculating Customer Lifetime Value. Journal of Marketing,

70(3), 5–20, http://doi.org/10.1509/jmkg.70.3.5

Jerath, K., Fader, P. S., Hardie, B. G. S. (2011). New Perspectives on Customer “Death” Using

a Generalization of the Pareto/NBD Model. Marketing Science, 30(5), 866–880,

http://doi.org/10.1287/mksc.1110.0654

Knox, G., van Oest, R. (2014). Customer Complaints and Recovery Effectiveness: A Customer

Base Approach. Journal of Marketing, 78(5), 42–57, http://doi.org/10.1509/jm.12.0317

Kumar, V., Pansari, A. (2016). National Culture, Economy, and Customer Lifetime Value:

Assessing the Relative Impact of the Drivers of Customer Lifetime Value for a Global

Retailer. Journal of International Marketing, 24(1), 1–21, http://doi.org/10.1509/jim.15.0112

Kumar, V. (2018). A Theory of Customer Valuation: Concepts, Metrics, Strategy, and

Implementation. Journal of Marketing, 82(1), 1–19, http://doi.org/10.1509/jm.17.0208

Lin, H.-H., Li, H.-T., Wang, Y.-S., Tseng, T.H., Kao, Y.-L., Wu, M.-Y. (2017). Predicting Customer

Lifetime Value for Hypermarket Private Label Products. Journal of Business Economics and

Management, 18(4), 619–635, http://doi.org/10.3846/16111699.2017.1308879

Lone, S. (2017). European Ecommerce Report 2017. [Retrieved 2018-09-20] Available at:

http://www.ecommercefoundation.org/download-free-reports

Paauwe, P., Van der Putten, P., Van Wezel, M. (2007). DTMC: an Actionable E-customer Lifetime

Value Model Based on Markov Chains and Decision Trees, in Proceedings of the Ninth

International Conference on Electronic Commerce. New York: ACM, pp. 253–262,

http://doi.org/10.1145/1282100.1282147

Pfeifer, P. E., Carraway, R. L. (2000). Modeling Customer Relationships as Markov

Chains. Journal of Interactive Marketing, 14(2), 43–55, http://doi.org/10.1002/

(SICI)1520-6653(200021)14:2<43::AID-DIR4>3.0.CO;2-H

Platzer, M., Reutterer, T. (2016). Ticking Away the Moments: Timing Regularity Helps to Better

Predict Customer Activity. Marketing Science, 35(5), 779–799, http://doi.org/10.1287/

mksc.2015.0963

Postnord (2016). E-commerce in Europe 2016. [Retrieved 2018-09-20] Available at:

http://www.postnord.com/globalassets/global/english/document/publications/2016/ecommerce-

in-europe-2016.pdf

Rathi, N. A., Betala, A. S. (2019). How Marketing Decisions are Taken with the Help of Big Data,

in Balas, V., Sharma, N., Chakrabarti, A., eds., Data Management, Analytics and Innovation.

Singapore: Springer, pp. 101–112, http://doi.org/10.1007/978-981-13-1274-8_8

Reinartz, W. J., Kumar, V. (2000). On the Profitability of Long-Life Customers in a Noncontractual

Setting: An Empirical Investigation and Implications for Marketing. Journal of Marketing,

64(4), 17–35, http://doi.org/10.1509/jmkg.64.4.17.18077

Schmittlein, D. C., Bemmaor, A. C., Morrison, D. G. (1985). Technical Note — Why Does the NBD

Model Work? Robustness in Representing Product Purchases, Brand Purchases and Imperfectly

Recorded Purchases. Marketing Science, 4(3), 255–266, http://doi.org/10.1287/mksc.4.3.255

Schmittlein, D. C., Morrison, D. G., Colombo, R. (1987). Counting Your Customers –

Who Are They and What Will They Do Next. Management Science, 33(1), 1–24,

http://doi.org/10.1287/mnsc.33.1.1

Schmittlein, D. C., Morrison, D. G. (1983). Prediction of Future Random Events with the

Condensed Negative Binomial Distribution. Journal of the American Statistical Association,

78(382), 449–456, http://doi.org/10.1080/01621459.1983.10477993

Schmittlein, D. C., Peterson, R. A. (1994). Customer Base Analysis: An Industrial Purchase Process

Application. Marketing Science, 13(1), 41–67, http://doi.org/10.1287/mksc.13.1.41

Singh, S. S., Jain, D. C. (2013). Measuring Customer Lifetime Value: Models and Analysis. INSEAD.

Working Paper No. 2013/27/MKT, http://doi.org/10.2139/ssrn.2214860

Tsay, R. S. (2013). Multivariate Time Series Analysis: With R and Financial Applications. New Jersey:

John Wiley & Sons. ISBN 978-1-118-61775-5.

Villanueva, J., Yoo, S., Hanssens, D. M. (2008). The Impact of Marketing-Induced Versus Word-of-

Mouth Customer Acquisition on Customer Equity Growth. Journal of Marketing Research,

45(1), 48–59, http://doi.org/10.1509/jmkr.45.1.48

Weng, C.-H., Huang, T. C.-K. (2018). Knowledge Acquisition of Association Rules

from the Customer-lifetime-value Perspective. Kybernetes, 47(3), 441–457,

http://doi.org/10.1108/K-03-2016-0042