Politická ekonomie Vol. 66 No. 4
Odhad Hurstova exponentu v časových řadách denních výnosů akciových indexů
DOI: https://doi.org/10.18267/j.polek.1207
[plný text (PDF)]
Pavel Srbek
One of the fundamental assumptions of the efficient market hypothesis and the modern portfolio theory are both Gaussian probability distribution and the independence of returns. This paper provides a brief historical review of efforts dealing with capital markets emphasizing their efficiency and counter-tendencies whose goal was to falsify the assumption of independence of returns and their normal distribution. This paper applies a measure of long-range dependence rediscovered and promoted by Mandelbrot to daily returns of 27 selected stock indices. This measure is called Hurst exponent and was estimated using rescaled range analysis. The results are in line with similar papers stating that the series of daily returns are prevailingly persistent which implies the presence of local trends. Such a finding falsifies the assumption of random walk in stock prices.
JEL klasifikace: C13, C18, G14, G17
Reference:
Bachelier, L. (1900). The Theory of Speculation. Annales scientifiques de l'École Normale
Supérieure, 3(17), 21–86.
Barunik, J., Krištoufek, L. (2010). On Hurst Exponent Estimation Under Heavy-tailed
Distributions. Physica A, 389(18), 3844–3855, https://doi.org/10.1016/j.physa.2010.05.025
Black, F., Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. The Journal of Political Economy, 81(3), 637–654, https://doi.org/10.1086/260062
Carbone, A. et al. (2004). Time-dependent Hurst Exponent in Financial Time Series. Physica A, 344(1–2), 267–271, https://doi.org/10.1016/j.physa.2004.06.130
Fama, E. F. (1963). Mandelbrot and the Stable Paretian Hypothesis. The Journal of Business, 36(4), 420–429, https://doi.org/10.1086/294633
Fama, E. F. (1965). The Distribution of Daily Differences of Stock Prices: a Test of Mandelbrot's Stable Paretian Hypothesis. Doctoral dissertation, Graduate School of Business, University of Chicago.
Fama, E. F. (1965). The Behavior of Stock-Market Prices. The Journal of Business, 38(1), 34–105, https://doi.org/10.1086/294743
Fama, E. F., Blume, M. E. (1966). Filter Rules and Stock-Market Trading. The Journal of Business, 39(1), 226–241, https://doi.org/10.1086/294849
Grech, D., Mazur, Z. (2003). Can One Make any Crash Prediction in Finance Using the Local Hurst Exponent Idea? Physica A, 336(1–2), 133–145, https://doi.org/10.1016/j.physa.2004.01.018
Huerta de Soto, J. (2013). Teorie dynamické efektivnosti. 1. vyd. Praha: Dokořán.
ISBN 978-80-7363-572-5.
Hurst, H. E. (1956). Long-term Storage Capacity of Reservoirs. Transaction of the American
Society of Civil Engineers, 116, 770–799.
Keynes, J. M. (2016). A Tratise On Probability. Middletown: CreateSpace Independent Publishing Platform. ISBN 978-1537084893.
Krištoufek, L. (2010). Rescaled Range Analysis and Detrended Fluctuation Analysis: Finite
Sample Properties and Confidence Intervals. AUCO Czech Economic Review, 4(3),
315–329.
Krištoufek, L., Vošvrda, M. (2012). Efektivita kapitálových trhů: fraktální dimenze, Hurstův exponent a entropie. Politická ekonomie, 60(2), 208–221, https://doi.org/10.18267/j.polek.838
Mandelbrot, B. (1963). The Variation of Certain Speculative Prices. The Journal of Business, 36(4), 394–419, https://doi.org/10.1007/978-1-4757-2763-0_14
Mandelbrot, B. (1997). Fractals and Scaling in Finance: Discontinuity, Concentration, Risk. 1. vyd. New York: Springer. ISBN 0-387-98363-5.
Mandelbrot, B. (2008). How Fractals Can Explain What's Wrong with Wall Street. Scientific
American, 15. 9. 2008.
Mansukhani, S. (2012). The Hurst Exponent: Predictability of Time Series. Analytics Magazine, 4,
29–31.
Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, 7(1), 77–91.
Moody, J., Wu, L. (1995). Price Behavior and Hurst Exponents of Tick-by-tick Interbank Foreign
Exchange Rates. Proceedings of Conference on Computational Intelligence for Financial
Engineering, 26–30, https://doi.org/10.1109/cifer.1995.495228
Morale, R. et al. (2012). Dynamical Generalized Hurst Exponent as a Tool to Monitor Unstable Periods in Financial Time Series. Physica A, 391(11), 3180–3189, https://doi.org/10.1016/j.physa.2012.01.004
Peng, C.-K. et al. (1994). Mosaic Organization of DNA Nucleotides. Physical Review E, 49(2), 1685–1689, https://doi.org/10.1103/physreve.49.1685
Sensoy, A. (2013). Time-varying Long Range Dependence in Market Returns of FEAS Members.
Chaos, Solitons & Fractals, 53, 39–45, https://doi.org/10.1016/j.chaos.2013.05.004
Sharpe, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. The Journal of Finance, 19(3), 425–442, https://doi.org/10.2307/2977928
Taleb, N. (2013). Zrádná nahodilost: o skryté roli náhody na trzích a v životě. 1. vyd. Praha: Paseka. ISBN 978-80-7432-292-1.
Taleb, N. (2014). Antifragilita: jak těžit z nahodilosti, neurčitosti a chaosu. 1. vyd. Praha: Paseka. ISBN 978-80-7432-498-7.
PRO AUTORY
Aktuální číslo
6/2018
Stati
Jan Hanousek, Štepán Jurajda
Názvy společností a jejich vliv na výkonnost firem
Matúš Mihalovič
Využitie skóringových modelov pri predikcii defaultu ekonomických subjektov v Slovenskej republike
Vladislav Flek, Martin Hála, Martina Mysíková
Nezaměstnanost a věková segmentace trhu práce
Marian Genčev, Denisa Musilová, Jan Široký
Matematický model Giniho koeficientu a zhodnocení redistribuční funkce daňového systému České republiky
Pavel Potužák
Stimuluje spotřebu v situaci nulové nominální úrokové míry zvýšení inflačních očekávání?
Knižní recenze
Marek Loužek
Omyly profesora Pikettyho
Josef Klement
Alternativní pohled na teorii peněz a monetární politiku