Politická ekonomie
Politická ekonomie
Politická ekonomie
TEORETICKÝ ČASOPIS • ISSN 0032-3233 (Print) • ISSN 2336-8225 (Online)

Politická ekonomie Vol. 59 No. 6

Modelování měnově politické úrokové míry ČNB neuronovými sítěmi

DOI: https://doi.org/10.18267/j.polek.823

[plný text (PDF)]

Jaromír Kukal, Tran Van Quang

Knowledgeability about interest rates set by a central bank is very important for all participants in an economy. In this paper we have used publicly available data to model how Czech National Bank manipulates its 2W repo rate when conducts its monetary policy. For this purpose, eight indicators are chosen. They are the Consumer Price Index (CPI), GDP growth rate (HDP), the monthly exchange rate EURCZK (KURZ), the monthly growth rate of monetary aggregate M2 (M2), the monthly unemployment rate (NEZAM), the monetary policy interest rate of the European Central Bank (EBC), the two-week Prague Interbank Interest rate PRIBOR14 and Economic Sentiment Indicator (IES). First, they are used as explanatory variables and then as the input signals to two different artificial neural network types with different architecture: the multilayer perceptron (MLP) and radial basis function (RBF) nets with different number of hidden neurons to model 2W repo rate of CNB. As a result, we fi nd that while the RBF network fails to provide stable results superior to the one of the linear model, the MLP network always can deliver better results than the one of the linear model. The best results are achieved with a network with only two hidden neurons. Further, these results are relatively stable with minimum time needed to complete the calculation. The MLP network therefore seems to be a promising tool for modeling the 2W repo rate of CNB.

JEL klasifikace: C54, C61, E52

ANDRLE, M.; HLÉDIK, T.; KAMENÍK, O.; VLČEK, J. 2009. Implementing the New Structural Model of the Czech National Bank. CNB WP 2/2009.

BENEŠ, J.; HLÉDIK, T.; KUMHOF, M.; VÁVRA, D. 2005. An Economy in Transition and DSGE: What the Czech National Bank‘s New Projection Model Needs. CNB WP No. 12/2005.

BLANCHARD, O. J.; KIYOTAKI, N. 1987. Monopolistic competition and the effect of aggregate demand. American Economic Review 77, pp. 647–666.

BRADA, J.; BRŮNA, K. 2004. Analýza citlivosti referenčních úrokových sazeb Pribor na změny repo sazby České národní banky. Politická ekonomie. 2004, Vol. 52, No. 5, pp. 601–621.

BRŮNA, K. 2009. Měnová politika a predikce variability úrokových sazeb na peněžním trhu. Politická ekonomie. 2009, Vol. 57, No. 3, pp. 361–382.

COLANDER, D. 2010. Testimony before the Committee on Science and Technology, U.S. House of Representatives 20.7.2010. Dostupné na http://science.house.gov/sites/republicans.science.house.gov/files/documents/hearings/072010_Colander.pdf

DURČÁKOVÁ, J.; MANDEL, M.; TOMŠÍK, V. 2005. Dynamický model nekryté úrokové parity – teorie a empirická verifi kace v transitivních ekonomikách. Politická ekonomie. 2005, Vol. 53, No. 3, pp. 291–304.

GALÍ, J. 2008. Monetary Policy, Infl ation and the Business Cycle: An Introduction to the New Keynesian Framework. Princeton University Press.

GREENE, W. H. 2003. Econometric Analysis. 5th edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.

HAYKIN S. 1999. Neural Networks: A comprehensive foundations. 2nd edition. Upper Saddle River, New Jersey: Prentice Hall, 1999.

CHARI, V. V. 2010. Testimony before the Committee on Science and Technology, U.S. House of Representatives 20. 7. 2010. Dostupné na http://www2.econ.iastate.edu/classes/econ502/tesfatsion/Chari.StateOfMacro.CongressionalTestimony.July2010.pdf

KING, M. 2003. What Has Infl ation Targeting Achieved? In BERNANKE, B. S.; WOODFORD, M. (Eds.) The Infl ation Targeting Debate. NBER, University of Chicago Press, pp. 11–16.

KOCHERLAKOTA, N. 2010. Modern Macroeconomic Models as Tools for Economic Policy. Banking and Policy Issues Magazine. Federal Reserve Bank of Minneapolis.

KŘIVÝ, I.; TVRDÍK, J.; KRPEC, R. 2000. Stochastic Algorithms in Nonlinear Regression. Computational Statistics and Data Analysis. 33(3), pp. 277–290.

KYDLAND, F. E.; PRESCOTT, E. C. 1982. Time to build and aggregate fl uctuations. Econometrica 50(6), pp. 1345–1370.

LUCAS, R. E. Jr. 1972. Expectations and the neutrality of money. Journal of Economic Theory 4(2), pp. 103–124.

MANKIW, N. G. 2006. The Macroeconomist as Scientist and Engineer. The Journal of Economic Perspectives 20(4), pp. 29–46.

MICHALEWICZ, Z.; FOGEL, D. B. 2004. How to Solve It: Modern Heuristics. 2nd edition. Springer, 2004. ISBN 978-3-540-22494-5.

SMETS, F.; WOUTERS, R. 2003. An estimated stochastic dynamic general equilibrium model of the euro area. Journal of the European Economic Association 1(5), pp. 1123–1175.

SOLOW, R. 2010. Testimony before the Committee on Science and Technology, U.S. House of Representatives 20.7.2010. Dostupné na http://www.scribd.com/doc/55379858/Solow-Testimony

ŠNOREK, M.; JIŘINA, M. 1997. Neuronové sítě a neuropočítače. Skripta ČVUT, Praha, 1997.

TAYLOR J. B. 1993. Discretion versus policy rules in practice. Carnegie Rochester Conference Series on Public Policy, 1993, Vol. 39, pp. 195–214.

TVRDÍK, J.; KŘIVÝ, I. 1999. Simple Evolutionary Heuristics for Global Optimization. Computational Statistics and Data Analysis. 1999, 30(3), pp. 345–352.

VILLAVERDE, J. F. 2010. The econometrics of DSGE model. International Review of Economics. 2010, 1(1), pp. 3–43.

WOODFORD, M. 2003. Interest and prices: Foundations of a theory of monetary policy. Princeton, New Jersey: Princeton University Press.

WOODFORD, M. 2008. Convergence in Macroeconomics: Elements of a New Synthesis. Paper presented in the session “Convergence in Macroeconomics” at the annual meeting of the American Economic Association, January 2008.

Zákon o České národní bance. Zákon č. 6/1993, Sbírka zákonů ČR.