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INTERDEPENDENCE BETWEEN SOME MAJOR EUROPEAN 

STOCK MARKETS – A WAVELET LEAD/LAG ANALYSIS 

Silvo Dajčman*

Abstract: 

This paper investigates multiscale interdependence between the stock markets of Germany, 
Austria, France, and the United Kingdom. Wavelet energy additive decomposition was analyzed to 
investigate which scales capture the most energy (volatility), whereas a wavelet cross-correlation 
estimator was used to analyze comovement and lead/lag relationship between stock markets’ 
return dynamics on a scale-by-scale basis. The main fi ndings of the paper are as follows. First, 
major fi nancial market crises had a signifi cant impact on return volatility of investigated stock 
markets. Among them, the global fi nancial crisis of 2007-2008 had the greatest and the most 
durable impact. Second, the lowest scale (associated with stock markets’ return dynamics over 
a 2-4 days horizon) and the second lowest scale (associated with stock markets’ return dynamics 
over 4-8 days horizon) MODWT (maximal overlap discrete wavelet transform) decompositions of 
stock markets’ returns captured the greatest share (together about 70-80%) of indices’ returns 
volatility. Third, comovement between stock market returns is a scale-dependent phenomenon. 
Fourth, a strong comovement between stock market returns of Germany, France, and the United 
Kingdom exists at all scales, while the Austrian stock market is less correlated with the three 
biggest stock markets in Europe. Fifth, the dynamics of stock market returns seems to be well 
time-synchronized at daily (raw returns) and the lowest scale (scale ) return decomposition as 
most of the return innovations are transmitted between stock markets intraday. Sixth, at the 
highest investigated scale (associated with stock markets’ return dynamics over a 64-128 days 
horizon), signifi cant leads and lags between dynamics of stock markets’ returns were detected. 
The time-synchronization of the stock markets’ return dynamics for investments of 64 to 128 days 
horizon is less perfect than for investments of shorter investment horizons.
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1.  Introduction

International stock market linkages are of great importance for fi nancial decisions of 
international investors. Since the seminal works of Markowitz (1958) and empirical 
evidence of Grubel (1968), it is recognized, that international diversifi cation reduces 
total risk of a portfolio. Increased comovement between asset returns can diminish 
the advantage of internationally diversifi ed investment portfolios (Ling and Dhesi, 
2010). Changes in comovement patterns call for an adjustment of portfolios (Savva 
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and Aslanidis, 2010). Furthermore, if spillovers are found in return series then it is 
possible to exploit strategy profi ts which are against the market effi ciency criteria 
(Harris and Pisedtasalasai, 2005). 

In existing literature, the following methods are usually used to measure the level of 
stock market return (or price) comovement and spillovers: (1) correlation coeffi cients 
(e.g., Koedijk et al., 2002; Longin and Solnik, 1995) to measure comovement; (2) Vector 
Autoregressive (VAR) models (Malliaris and Urrutia, 1992; Gilmore and McManus, 2002) 
to estimate spillover effects between stock markets; (3) cointegration analysis (Gerrits and 
Yuce, 1999; Patev et al., 2006) to fi nd long-term comovements between stock markets; 
(4) GARCH models (Tse and Tsui, 2002; Bae et al., 2003; Égert and Kočenda, 2010; 
Mazin et al., 2010) and regime switching models to model spillovers (Garcia and Tsafack, 
2009; Schwender, 2010).  A novel, but very promising approach, is wavelet analysis, which 
can be used to investigate both, stock market comovements and spillovers. 

Economic and fi nancial phenomena may exhibit different characteristics on different 
time scales and wavelet analysis tools enable us to investigate the multiscale features 
of these phenomena.  As wavelets are localized in both time and scale, unlike Fourier 
analysis, and spectral analysis, they thus provide a convenient and effi cient way of 
representing complex variables or signals (Ramsey, 1999). Moreover, because of the 
translation and scale properties, nonstationarity in data is not a problem when using 
wavelets and prefi ltering is not needed (Pinho in Madaleno, 2009). Wavelet analysis is 
suitable for detecting seasonal and cyclical patterns, structural breaks, trend analysis, 
fractal structures and multiresolution analysis (Crowley, 2005).1 Wavelets in fi nance 
are primarily used as a signal decomposition tool (e.g. Mallat and Zhang, 1993; Gençay 
et al., 2001a; Gençay et al., 2003; Gençay et al., 2005; Vuorenmaa, 2006), or a tool to 
detect interdependence between variables (In and Kim, 2006; In et al., 2008; Kim and 
In, 2005; Kim and In, 2007). 

Wavelet cross-correlation tools can be used to analyze the lead/lag (spillover) 
relationship between two time series for different time scales. If one time series leads 
the other, then its realizations may be used to forecast the realizations of the lagging 
time series. The size and signifi cance of cross-correlation tells if the leading time series 
has predictive power for the lagging time series. Just as the usual time-domain cross-
correlation is used to determine lead/lag relationships between two time series, the 
wavelet cross-correlation will provide a lead/lag relationship on a scale-by-scale basis. 
When two time series are time-aligned, their cross-correlation estimate for lag zero 
is equal to correlation between the two time series and tells how much they comove. 
Further, if cross-correlations of the two time series are not signifi cant at non-zero 
leads/lags, we may say that two time series are well time synchronized. The wavelet 
cross-correlation has been recently used in different scientifi c disciplines: in biology 
(Hudson et al., 2010), physics (Turbelin et al., 2009), medicine (de Trad et al., 2001) 
and also in economics. 

1 Good descriptions of wavelets and their applications can be found in Daubechies (1992), Percival 
and Walden (2000), Gençay et al. (2002), Mallat (2009).
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There are a few studies using wavelet cross-correlation to investigate spillover 
effects between fi nancial variables for different time scales. Gallegati (2008) studied 
the relationship between stock market returns and economic activity. He applied 
a maximal overlap discrete wavelet transform (MODWT) analysis to study the lead/lag 
relationship between stock prices and industrial production for different time scales. 
His results show that stock markets tend to lead the level of economic activity, but 
only at the highest scales (lowest frequencies), and the leading period increases as the 
scale increases. Cardinali (2009), by using MODWT lead/lag analysis, found evidence 
that Eurodollar implied volatilities contain predictive information about realized 
volatilities. Ranta (2010) applied MODWT cross-correlation tool to study the lead/lag 
relationship between stock indices DAX, FTSE100, S&P500, and Nikkei225. Wavelet 
cross-correlation for the time scales of a day and a week showed a fl ow (spillover) of 
volatility from the S&P500 to other indices. On a one month scale, there was fl ow of 
volatility from the European indices, especially from the DAX to the S&P500, and 
Nikkei225.

Using MODWT tools, this paper aims to answer four questions: What effect did 
major fi nancial market crises have on volatilities of stock market returns of Austria, 
Germany, France and the United Kingdom? Are return comovements and spillovers 
between stock markets a multiscale (i.e. time-frequency) phenomena? How well are 
dynamics of different stock market returns time-synchronized at particular time scales? 
and which stock markets are leading, and thus preceding other stock markets in their 
return dynamics? 

2.  Description of the Maximal Overlap Discrete Wavelet Transform (MODWT)

2.1  Wavelet analysis

Similar to Fourier analysis, wavelet analysis1 involves the projection of the original 
series onto a sequence of basic functions, which are known as wavelets. There are two 
basic wavelet functions: the father wavelet (called also a scaling function), , and the 
mother wavelet (called also a wavelet function), ψ, which can be scaled and translated 
to form a basis for the Hilbert space 2 ( )L  of square integrable functions. 

The father and mother wavelets are defi ned by the functions:

 2
, ( ) 2 (2 )

j

j

j k t t k    , (1a)

 2
, ( ) 2 (2 )

j

j

j k t t k    , (1b)

where j = 1, ... J is the scaling parameter in a J-level decomposition and k is a translation 
parameter ( ,j k ). The long term trend of the time series is captured by the father 
wavelet, which integrates to 1, while the mother wavelet, which integrates to 0, 
describes fl uctuations from the trend. The continuous wavelet transform of a square 
integrable time series X(t) consists of the scaling, αJ,k , and wavelet coeffi cients, βJ,k, 
(Craigmile and Percival, 2002):
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  , ,( ) ( )J k J kt t X t    (2a)
and 

  , ,( ) ( )j k j kt t X t   . (2b)

It is possible to reconstruct  from these transform coeffi cients using:

      , , , , 1, 1, 1, 1,( ) ( )J k J k J k J k J k J k k k

k k k k

X t t t t t               . (3)

In practice we observe a time series at fi nite number of regularly spaced times, so 
we can make use of a discrete wavelet transform (DWT)2 or a maximal overlap 
discrete wavelet transform (MODWT). The MODWT is a linear fi ltering operation that 
transforms a series into coeffi cients related to variations over a set of scales. It is similar 
to the discrete wavelet transform, but it gives up the orthogonality property of the DWT 
to gain other features, that render MODWT more suitable for the aims of our study, 
as (Percival and Mojfeld, 1997): i) the ability to handle any sample size regardless of 
whether the series is dyadic (that is of size 2J0, where J0 is a positive integer number), or 
not; ii) increased resolution at higher scales as the MODWT oversamples the data; iii) 
translation-invariance, which ensures that MODWT wavelet coeffi cients do not change 
if the time series is shifted in a "circular" fashion; iv) the MODWT produces a more 
asymptotically effi cient wavelet variance estimator than the DWT.

2.2  MODWT wavelet analysis

Let3 X be a N dimensional vector whose elements are the real-valued time series 
{Xt : t = 0, ..., N – 1}, where the sample size N is any positive integer. For any 
positive integer, J0 , the level J0 MODWT of X is a transform consisting of the 

J0 + 1 vectors  
01, , JW W and 

0JV , all of which have the dimension N. The vector 
0JW  

contains the MODWT wavelet coeffi cients associated with changes at scale τj = 2 j–1 

(for j = 1, ..., J0),
4 while 

0JV  contains MODWT scaling coeffi cients associated with 
averages at scale ȜJ0 

= 2J0

 
. 

Based upon a defi nition of MODWT coeffi cients we can write (Percival and Walden, 
2000):

   
 

j jWW X  (4a)
and 

  
0 0J JVV X  ,  (4b)

where JW  and  0JV  are N × N matrices. 

2 For a presentation of DWT, please refer to Percival and Walden (2000).

3 Concepts and notations as in Percival and Walden (2000) are used.

4 Percival and Walden (2000) denote scales of MODWT obtained wavelet coeffi cients with a letter τ 
and scales of scaling coeffi cients with Ȝ. We use the same notations.
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By defi nition, the elements of  
0JW  and 

0JV  are outputs obtained by fi ltering X, namely:

   1
, ,0  

jL
j t j ll t l modNhW X


   (5a)

and 

  ( 1)
, ( 0) ( , ) ( ) ,

jL
j t l j l t lmodNV g X


    (5b)

for t = 0, ..., N – 1, and where ( , )j lh and ( , )j lg are the jth-level MODWT wavelet and 
scaling fi lters defi ned in terms of the jth-level equivalent wavelet and scaling fi lters  
{hj,l}and {gj,l} for a discrete wavelet transform (DWT):

  /2
, , / 2 j

j l j lh h  (6a)

and

 
/2

, , / 2 j

j l j lg g . (6b)

Each of the MODWT wavelet fi lters has width (2 1)( 1) 1j

jL L     and can be 
calculated once basic MODWT wavelet fi lter 1, / 2l l lh h h    and MODWT scaling 
fi lter 1

1, 1( 1)l

l l L lg g h        have been specifi ed.

A DWT fi lter { : 0, , 1}lh l L    of even width L is called a wavelet fi lter if 

  
1
0 0L

l lh   (7a)

and           
0

 
1
0 2

1,

0,
L

l l l n

if n
g g

if n

 
 
is nonzero integer.        (7b)

A DWT scaling fi lter is defi ned in terms of the wavelet fi lter 

 
1

1( 1)l

l L lg h      (8a)

and satisfi es conditions

1) 2l lg   (8b)

               0
2)

 
1
0 2

1,

0,
L

l l l n

if n
g g

if n

 
 
is nonzero integer. (8c)

The MODWT treats the series as if it were periodic, whereby the unobserved samples 
of the real-valued time series X–1, X–2, ... X–N are assigned the observed values at XN–1, 

XN–2 , ... X0 . The MODWT coeffi cients are thus given by: 

  1
, 0 ,  

N
j t l j l t l modNh XW       (9a)

and
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  1
, 0 ,  

N
j t l j l t l modNg XV      (9b)

for t = 0, ..., N –1; ,j lh ; and ,j lg  are periodization of ,j lh  and 
,j lg to circular fi lters of 

length N.

This periodic extension of the time series is known as analyzing {Xl} using ˝circular 
boundary condition˝ (Percival and Walden, 2000; Cornish et al., 2006). There are 

Lj = 1 wavelet and scaling coeffi cients that are infl uenced by the extension (˝the 
boundary coeffi cients˝). Since Lj increases with j, the number of boundary coeffi cients 
increases with scale. Exclusion of boundary coeffi cients in the wavelet variance, 
wavelet correlation and covariance provides unbiased estimates (Cornish et al., 2006).

2.2  Wavelet variance and wavelet correlation 

One of the important uses of the MODWT is to decompose the sample variance of 
a time series on a scale-by-scale basis. Since the MODWT is energy conserving 
(Percival and Mojfeld, 1997)

  0
0

2 22
1

J
j jj X W V , (10)

a scale-dependent analysis of variance from the wavelet and scaling coeffi cients can be 
derived (Cornish et al., 2006):

  0
0

2 22 2 2 2
1

1 1
ˆ J

j jX jX X
N N

     X W V . (11)

Wavelet variance is defi ned for stationary and nonstationary processes with stationary 
backward differences (Percival and Walden, 2000). Let {Xt : t = ..., –1, 0, 1, ... } be 
a discrete parameter real-valued stochastic process whose d th-order diferencing (d may 
take any nonnegative integer values) gives a stationary process

 0(1 ) ( 1)d d k

t t k t k

d
Y B X X

k
 
       ,  (12)

with spectral density function (SDF) SY(.) and mean ȝY (which may not be zero). Let 
SX(.) represent the SDF for {Xt}, for which SX(f) = SY(f)/D

d(f), where D(f) ≡ 4sin2 (πf) 
(if {Xt} is a nonstationary process, then this relationship between SX(.) and SY(.) repre-

sents defi nition for SX(.)). Filtering {Xt} with a MODWT Daubechies wavelet fi lter .{ }j lh  

of width 2L d ,5 a stationary process of jth-level MODWT wavelet is obtained:

5 That means the fi lter size must be at least the double size of the order of differencing the time series. 
For stationary processes any fi lter width is appropriate.
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 1
, 0 . ,   , 1, 0, 1,jL

j t l j l t lW h X t


       ,            (13)

where , j tW  is a stochastic process obtained by fi ltering {Xt} with the MODWT wavelet 

fi lter .{ }j lh 6 and (2 1)( 1) 1.j

jL L     

Let us suppose that we are given a time series, which is realization of one segment 
(segment with values X0 ,  ..., XN – 1) of the process {Xt}. Under condition Mj ≡ N – Lj + 1 > 0
(i.e. by considering only the non-boundary wavelet coeffi cients, obtained by fi ltering 
stationary time series with MODWT) and that either L > 2d or ȝx = 0 (realization of 

either of these two conditions implies  ,j tE W = 0 and therefore 2 ( )X j E  {
2

,j tW }7), 

an unbiased estimator of wavelet variance of scale  2( )j X j    is given by (Percival and 

Walden, 2000):

    22 1
,1

1
ˆ

j

N
j tX j t L

j

W
M

     , (14)

where  ,j tW  are the jth-level MODWT wavelet coeffi cients for time series 

(  1
, 0 .  , 0,1, , 1jL

j t l j l t l modNW h X t N


      ).

It is possible to prove that the asymptotic distribution of  2ˆ
X j   is Gaussian, a result 

that allows the formulation of confi dence intervals for the estimate (Percival, 1995; 
Serroukh et al., 2000).

Given two stationary processes {Xt} and {Yt}, whose jth-level MODWT wavelet 
coeffi cients are  , ,X j tW  and  , ,Y j tW , an unbiased covariance estimator ˆ ( )XY j   is 
given by (Percival, 1995):

      1
( ) ( )

, , , , , , ,

1

1
ˆ ,

j

N
X Y

X Y j t j t X j t Y j tj

t Lj

W W WW cov
M

  

 
  , (15)

where 1 0j jM N L     is the number of non-boundary coeffi cients at the jth-level.

The MODWT correlation estimator for scale τj is obtained by making use of the wavelet 
covariance and the square root of wavelet variances:

       ,
,

Y

ˆ

ˆˆ
ˆ X Y j

X Y j

X j j


    , (16)

where  ˆ 1XY j   . The wavelet correlation is analogous to its Fourier equivalent, the 
complex coherency (Gençay et al., 2002). 

Calculation of confi dence intervals is based on Percival (1995) and Percival and Walden 
(2000). The random interval

6 ,j tW is obtained by fi ltering an infi nite sequence, while  ,j tW  is obtained by fi ltering a fi nite 
sequence (Percival and Walden, 2000).

7 In this case we obtain        2 22
, , , ,{ }j t j t j t j tX j var E W E WW W E     
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    1 1

j j

(1 p) (1 p)
tanh h , tanh h

N 3 N 3
XY j XY j                                  

  (17)          

captures the true wavelet correlation and provides an approximate 100(1 – 2p)% 
confi dence interval. Function h(p) = tanh–1̂ defi nes the Fisher’s z-transformation. 
Nj is the number of wavelet coeffi cients obtained by jth-level of DWT and not by 
the MODWT transformation. This is because the Fisher’s z-transformation assumes 
uncorrelated observations and the DWT is known to approximately decorrelate a wide 
range of power-law processes (Ranta, 2010).

2.4  Wavelet cross-correlation

Cross-correlation is a method of estimating the degree to which two time series are 
correlated. We can shift one time series (either lag [π is then negative] or lead [π is 
then positive]) and then calculate the correlation between the two time series. Cross-
correlation analysis helps identify which time series return innovations are leading the 
other time series return innovations, with the latter time series characterized as lagging). 
The size and signifi cance of cross-correlation estimates reveal if the leading time series 
has predictive power for the lagging time series. Just as the usual time-domain cross-
correlation is used to determine lead/lag relationships between two time series, the 
wavelet cross-correlation will provide a lead/lag relationship on a scale-by-scale basis. 

The MODWT cross-correlation for scale τj at lag π, is defi ned as (Guttorp et al., 1999):

                               
    

, ,
, 1

2
, ,

{ , }

( { })

X Y

j t j t

XY j
X Y

j t j t

cov W W

var W var W




  


 ,  (18)

where 
 

,
X

j tW  are the jth-level MODWT wavelet coeffi cients of time series {Xt}, at time t,

and 
 

,
Y

j tW  are the jth-level MODWT wavelet coeffi cients of time series {Yt} lagged for 
π time units.

Wavelet cross-correlation takes values ,ˆ1 1( )XY j    , for all τ and j. This can be 
shown using Cauchy-Schwartz inequality.8

3.  Empirical Results

3.1 Data description

Returns of stock indices are calculated as differences of logarithmic daily closing prices:

 ln(Pt) – ln(Pt–1), (19)

where P is an index price. 

8 Proof can be found in Pecival (1995).
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The following stock market indices are considered: CAC40 (for France), the DAX (for 
Germany), the FTSE100 (for the United Kingdom) and the ATX (for Austria). The fi rst 
day of observation is April 1, 1997, and the last day is May 12, 2010. Days with no trading 
on any of the observed stock markets were left out. The total number of observations 
amounts to 3,060 days. The data source for each index value was Yahoo! Finance.   

Table 1 presents descriptive statistics of the data. The Jarque-Bera test rejects the 
hypothesis of a normal distribution of the investigated return time series; all indices’ 
returns are asymmetrically distributed around the sample mean; kurtosis is greater 
than with normally distributed time series. Such skewness and leptokusis are common 
features in asset return distributions (Henry, 2002). 

Table 1

Descriptive Statistics for Stock Index Return Time Series 

Min Max Mean
Std. 

deviation
Skewness Kurtosis

Jacque-Bera
statistics

ATX -0.1637 0.1304 0.0002515 0.01558 -0.40 14.91 18,153.48***

CAC40 -0.0947 0.1059 0.0001206 0.01628 0.09 7.83 2,982.52***

DAX -0.0850 0.1080 0.0002071 0.01756 -0.06 6.58 1,635.47***

FTSE100 -0.0927 0.1079 0.0000774 0.01361 0.09 9.30 5,069.61***

Note: Regarding the Jarque-Bera test: the null hypothesis is that the sample data come from a normal distribution 
with unknown mean and variance, against the alternative that it does not come from a normal distribution. Jacque-
Bera statistics: *** indicates that the null hypothesis (of normal distribution) is rejected at the 1% signifi cance, 
** indicates that the null hypothesis is rejected at the 5% signifi cance and * that the null hypothesis is rejected at the 
10% signifi cance level.

In Figure 1, we plot the return series of the stock indices. Major fi nancial market 
downturns in the period April 1998 to May 2010 are denoted on the vertical axis, including 
the Russian fi nancial crisis, the dot-com fi nancial crisis, the September 11 attacks on 
the World Trade Center (WTC) (which also had an impact on fi nancial markets), the 
internet companies bubble burst of July 2002, the Middle East fi nancial market crisis 
of 2006, and the global fi nancial crisis of 2007-2008. Notably, all of these events had 
some impact on the volatility of the investigated stock market returns; however, impacts 
were not uniform. For instance, we notice that dot-com fi nancial crisis, the September 
11 attacks and the internet companies bubble burst did not particularly increase volatility 
of the ATX returns, whereas they had a more pronounced effect on the volatility of other 
stock market returns. Next, the global fi nancial crisis of 2007-2008 caused the greatest 
increase in volatilities of stock indices returns. Some fi nancial market downturns had 
a longer lasting effect on returns volatilities than the others. Two fi nancial market crises 
stand out for the durability of their effect on increased volatilities are internet companies 
bubble burst of 2002 and the global fi nancial crisis of 2007-2008. 
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Figure 1

Returns of Stock Indices in the Period April 1, 1997 to May 12, 2010

Notes: On the time axis, the fi nancial crises are denoted as RFC = the Russian fi nancial crisis (outbreak on August 13, 
1998), DCC = the dot-com crisis (the date is taken when the S&P500 peaked around March 24, 2000, just before the 
dot-com crisis began), WTC = attack on the WTC in New York (September 11, 2001), IBB = the internet companies 
bubble burst (the start of July 2002 is denoted in the fi gure), MEC = the middle East fi nancial markets crash (the start 
of May 2006 is denoted), GFC = the global fi nancial crisis (September 16, 2008, when Lehman Brother collapsed is 
denoted).

To test the stationarity of stock indices’ returns, augmented Dickey-Fuller (ADF) test, 
Phillips-Perron (PP) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests were applied. 
Test results are presented in Table 2.

Because the trend was not found to be statistically signifi cant for either of the stationarity 
tests, the models with only a constant were given advantage. The KPSS model results 
do not reject the null hypothesis of stationary process for any of stock indices’ returns 
whereas the null hypotheses of unit root were rejected for the PP and ADF tests for all 
stock indices. On the basis of the stationarity tests we conclude that all time series of 
indices’ returns are stationary. 
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Table 2

Results of the Stationarity Tests 

KPPS test
(a constant 

+ trend)

KPSS test
(a constant)

PP test
(a constant 

+ trend)

PP test
(a constant)

ADF test
(a constant + 

trend)

ADF test
(a constant)

ATX
0.186**

(12)
0.191
(13)

-53.586*** 
(15)

-53.594*** 
(15)

- 40.604**
(L=1)

- 40.608***
(L=1)

CAC40
0.110
(15)

0.250
(15)

-57.840***
(14)

-57.787***
(14)

- 36.142***
(L=2)

- 36.108***
(L=2)

DAX
0.099

(1)
0.105

(1)
-57.805***

(3)
-57.812***

(3)
- 57.692***

(L=0))
- 57.698***

(L=0)

FTSE100
0.089

(9)
0.101

(9)
-58.284***

(7)
-58.287***

(7)
-29.112***

(L=3)
- 29.111***

(L=3)

Notes: The KPSS and PP tests were performed for two models: for a model with a constant and for a model with 
a constant plus trend. Bartlet Kernel estimation method was used with Newey-West automatic bandwidth selection. 
Optimal bandwidth is indicated in parenthesis under the statistics. For ADF test, two models were applied: a model 
with a constant and a model with a constant plus trend. The number of lags (L) included in the ADF test were selected 
by SIC criteria (30 was a maximum lag) and are indicated in the parentheses. Exceeded critical values for rejection of 
the null hypothesis are marked by *** for a 1% signifi cance level, by ** for a 5% signifi cance level and by * for a 10% 
signifi cance level. 

3.2 Lead/lag relationships between the returns of stock indices 

MODWT transformations of the indices’ return series were performed by using 
a Daubechies least asymmetric fi lter with a wavelet fi lter length of 8 (LA8). This is 
a common wavelet fi lter used in empirical studies on fi nancial market interdependencies 
(Gençay et al., 2001b; Gallegati, 2005; Ranta, 2010). The maximum level of MODWT is 

6 (J0 = 6) to achieve an optimal balance between sample size and the length of the fi lter. 
Scale τ1 (or scale 1, as τ1=21–1 = 1) measures the dynamics of returns over 2 to 4 days9; 
scale τ2 (scale 2, as τ2=22–1 = 2) over 4 to 8 days; scale τ3 (scale 4, as τ3= 23–1 = 4) over 
8 to 16 days; scale τ4 (scale 8, τ4=24–1 = 8) over 16 to 32 days; scale τ5 (or scale 16) over 
32 to 64 days; and scale τ6 (or scale 32) over 64 to 128 days. 

To obtain unbiased estimates of cross-correlation, only non-boundary wavelet coeffi -
cients were considered. There are 2,619 MODWT wavelet coeffi cients not affected by 
boundary condition.10 A major drawback of taking a higher maximum number of levels 
in the MODWT decomposition would be losing sample size. Because we also wanted 
to include the period after the beginning of the global fi nancial crisis (When Lehman 
Brother collapsed on September 16, 2008, it caused a global fi nancial market panic; this 
is taken as the start of the global fi nancial crisis), we decided not to take greater than 6. 

9 The jth-level MODWT coeffi cients are associated with the frequencies in the interval 1

1 1
[ ]
2 2j j ,

 i.e. with dynamics or oscillations in the period of 2j to 2j+1 days. See, for example, Gençay et al. 

(2002, 2003), Lee (2004), Fernandez (2004), or Percival and Walden (2000).

10 1 3060 442 1,jN L      where   62 1 8 1 1jL       is a width of a wavelet fi lter. The fi rst 
220 observations in each time series are exclued (with time indices t = 0, ... Lj – 2), and the last 221 
(with indices t = N – Lj + 1, ..., N – 1).   
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We fi rst perform a wavelet variance decomposition analysis (Figure 2) to illustrate that 
most of volatility in stock indices’ return series is captured by lower level MODWT 
wavelet coeffi cients (i.e., level 1 (j = 1) MODWT wavelet coeffi cients, associated with 
return dynamics over 2 to 4 days and level 2 (j = 2) MODWT wavelet coeffi cients 
associated with return dynamics over 4 to 8 days).  

Figure 2

Wavelet Variance of Stock Indices’ Returns for Different Level of MODWT 

Note: Estimates of wavelet variance for different levels of MODWT wavelet coeffi cients are drawn with a full line. The 
95% confi dence intervals around the wavelet variance estimates are drawn with a dotted line.  

Table 3 shows the proportions (in percentages) of the energy of the return series accounted 
by wavelet coeffi cients of particular wavelet scales. 

Table 3 

A Scale-based Energy Decomposition of Stock Indices’ Returns (the contribution, in %, of the 
jth-wavelet scale energy to the total energy of the signal)

W1 W2 W3 W4 W5 W6 V6 Total

ATX 49.5 28.2 12.3 5.2 2.3 1.0 1.5 100

DAX 52.4 26.2 11.4 5.3 2.3 1.1 1.4 100

CAC40 51.4 28.0 11.9 4.7 2.0 0.9 1.2 100

FTSE100 52.2 28.5 11.1 4.5 2.0 0.8 0.7 100

Note: Wj (j = 1, ..., 6) are MODWT wavelet coeffi cients at scale j, and V6 are MODWT scaling coeffi cients.
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We can observe that high-frequency (low-scale) MODWT coeffi cients represent more 
energy (for example, the level 1 MODWT wavelet coeffi cients, representing short-
term fl uctuations due to a shock occurring within a day or two, capture 49.5 to 52.2% 
of the total energy of the stock indices’ returns) than lower frequency (higher-scale) 
coeffi cients (for example, level 6 MODWT wavelet coeffi cients capture only 0.8 to 
1.1% of the total energy of stock indices’ returns)11. According to Lee (2004) and 
Fernandez (2005), a fi nding such as this indicates that movements in stock returns 
are mainly caused by short-term fl uctuations. This is reasonable, as the longer the 
investors’ investment horizon in stock markets (for example, institutional investors 
or individuals with longer time horizons), the less rapid their adjustment to shocks. 
This is in contrast, for example, with daily traders, who adjust their investments more 
rapidly (intraday) to shocks in stock markets.

Next, we explore cross-correlation between pairs of stock market indices’ returns by 
calculating and then plotting the cross-correlation function for 50 time units of leads/
lags ( 50, 49, ,0, 49,50      ). We thus calculate the cross-correlation between 
two stock market returns time series fi rst by lagging the second time series by 50 time 
units. Then, we sequentially repeat the calculation of the cross-correlation for other 
time shifts (from the lags of 49 time units to the leads of 50 time units). Wavelet cross-
correlations calculated for two indices’ return time series that are time-aligned equals 
the wavelet correlation coeffi cient. If no correlation coeffi cient at the leads (or the 
lags; 0  ) of one time series is statistically signifi cantly different than zero, then no 
time series is leading (or lagging) the other time series. If there are signifi cant cross-
correlation estimates at the leads and lags, then one time series is leading or lagging 
the other (meaning that the second one is lagging the fi rst). Zero-lag cross-correlation 
estimates measure comovements (the contemporaneous relationship) between the stock 
indices returns, whereas non-zero cross-correlation estimates measure the lead-lag 
(spillover) relationship between the two time series. Due to space considerations, 
cross-correlations were analyzed for the raw returns only (i.e., untransformed), scale 
τ1 , scale τ1, and scale τ6 MODWT transformed return series. 

Wavelet correlation analysis reveals the comovement between stock market returns at 
different time scales; results are presented in Figure 3. Notably, the estimated wavelet 
correlation changes with the time scale, suggesting that the return comovement between 
stock markets is a multiscale phenomenon. The strength of comovement changes 
more for some stock market pairs (DAX and CAC40), than for others (for example, 
between CAC40 and FTSE100). The highest correlation between indices’ returns is 
normally achieved at scale 4 (an exception is the ATX correlation with CAC40 and with 

11 Lee (2004) and Fernandez (2005) also studied the energy decomposition of stock indices returns. 
Lee (2004) found that scale 1 and 2 together captured about 70% of the energy for Korean stock 
market indices and about 80% for U.S. stock market indices. Fernandez (2005), analyzing more 
stock indices (of G7 countries, emerging Asia, Western Europe, Eastern Europe, and the Middle East 
for the period from 1990 to 2002), found that the fi rst and second scale together captured at least 
60% of the indices’ returns volatility.
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FTSE100)12 indicating diversifi cation benefi ts are the smallest for investments with 
horizons corresponding to scale τ4. Our results support recent fi ndings in the empirical 
literature (Ranta, 2010; Zhou, 2011), although these studies examined other time 
periods and stock markets. To achieve diversifi cation benefi ts, international investors 
should therefore investigate comovement in invested stock markets for time scales that 
correspond with their investment horizons. One may also note a strong comovement 
between stock market returns of Germany, France, and the United Kingdom at all scales, 
while the Austrian stock market comoves less with the other three investigated stock 
markets in Europe.

Figure 3

Correlation of Stock Indices’ Returns at Different Time Scales 

Note: Estimates of correlation between jth-level of MODWT wavelet coeffi cients are drawn with a full line. The 95% 
confi dence intervals (calculated by equation (17)) around the wavelet correlation estimates are drawn with dotted line.  

12  The fi nding that comovement between the stock markets often increases as the investment horizon 
(time scale) is prolonged has a theoretical explanation. At shorter scales, links between the markets 
are infl uenced, to a great extent, by sporadic events, market sentiments, and psychological factors 
that can cause short-term changes in  market behavior (Malkiel, 2003; Zhou, 2011). In the long run 
(higher scales), as Boudoukh et al. (2008) and  Zhou (2011) argued, market returns become more 
predictable as the macro variables exert more predictable infl uence on the stock market links and 
cause the correlation to increase. Recent empirical fi ndings from the stock market seem to confi rm 
this (e.g., Ranta, 2010; Zhou, 2011).
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The results of the lead/lag analysis of indices’ return series are illustrated in Figures 4 
through 913. 

Figure 4

Cross-correlation between the Return Series of ATX and DAX

Notes: The cross-correlation is calculated by shifting the second index in the pair (in this case DAX). The 95% 
confi dence intervals are drawn with a dotted line. For the raw return series the 95% confi dence interval that the cross-
correlation between the two time series is zero is drawn and is calculated using Matlab’s built-in cross-correlation 
function. For the wavelet cross-correlation the 95% confi dence intervals around the cross-correlation estimate are 
drawn based on the equation (17). 

13 When calculating and then graphically presenting the cross-correlation estimates between two 
time series of stock indices returns, we are shifting the time series of the second stock index in the 
individual stock indices pairs. For example, in Figure 3, the time series of DAX returns is time 
shifted.
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Figure 5

Cross-correlation between the Return Series of ATX and CAC40

Notes: See notes for Figure 4.

Figure 6

Cross-correlation between the Return Series of ATX and FTSE100

Notes: See notes for Figure 4.
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Figure 7

Cross-correlation between the Return Series of DAX and CAC40

Notes: See notes for Figure 4.

Figure 8

Cross-correlation between the Return Series of DAX and FTSE100

Notes: See notes for Figure 4.
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Figure 9

Cross-correlation between the Return Series of CAC40 and FTSE100

Notes: See notes for Figure 4.

For the raw (daily) return dynamics, the cross-correlation at lag zero is the largest 
and statistically signifi cant for all stock indices pairs. We note that only a few cross-
correlation estimates for non-zero lags are statistically signifi cant, indicating that stock 
return dynamics (caused by shocks, due to sporadic events, changes in market sentiment, 
or new information in the market) are well time-synchronized across the investigated 
stock markets.

At scale τ1, corresponding to 2 to 4 days return dynamics in the stock markets, the 
greatest cross-correlation is estimated for time-aligned stock indices’ return series, 
indicating that stock return dynamics are well time-synchronized across the investigated 
stock markets at this scale. Only cross-correlations with the time shift of π = 1 and π =  –1 
are signifi cantly different from zero, while others are not14 (the 95% confi dence intervals 
around the cross-correlation estimates are illustrated in Figures 3-8). 

14 Cross-correlation estimates at this time shift are signifi cantly negative. This is because at the interval 
of scale  τ1 (2-4 days), there are often diverse movements in stock markets. For example, in one day 
(or in two consecutive days) the stock market returns may increase, whereas the remaining days in 
the time interval of the time scale the returns may decrease. If two stock markets usually move in the 
same direction, then shifting one time series of stock market returns (π = 1 or π =  –1) can produce 
negative cross-correlations, even if the contemporaneous cross-correlation (i.e., comovement) is 
highly positive.
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At scale τ4 (corresponding to 16-32 day return dynamics), the highest cross-correlation 
between stock market returns is observed at lag zero. It may take a longer time (i.e., 
not intraday), however, for return innovations to transmit between the stock markets. 
Therefore, more cross-correlations estimated at non-zero lags are signifi cantly different 
than zero. 

At scale τ6 , corresponding to return dynamics over a 64 to 128 day horizon, we fi nd that 
the dynamics of the DAX and CAC40 returns are the most time-synchronized of all stock 
indices pairs. The highest cross-correlation between the two stock indices is achieved at 
lag zero. ATX return dynamics at this scale is the least time-synchronized with the other 
stock indices’ returns dynamics. The highest cross-correlation estimates were found at 
the DAX leading the ATX for 4 days; the CAC40 leading the ATX for 3 days; and the 
FTSE100 leading the ATX for 5 days. This indicates that spillovers usually occur from 
the larger European stock markets to the Austrian stock market. The FTSE100 return 
dynamics mostly precedes not only the ATX (by 5 days), but also the DAX and CAC40 
return dynamics (by 1 day), indicating spillovers at this time scale (investment horizon) 
from the UK to the German and French stock markets. 

Conclusion

In this paper, we have studied multiscale interdependence of stock market returns in 
Austria, Germany, France, and the United Kingdom during the period April 1, 1997 
to May 12, 2010. We found that fi nancial market crises had a signifi cant impact on 
the volatility of stock market returns. The global fi nancial crisis of 2007-2008 had the 
greatest and the most durable impact. 

After proving that daily return series are stationary, the MODWT energy additive 
decomposition was used to fi nd that most energy (volatility) of stock indices returns 
during the observed period were captured by scale τ1 (corresponding to a 2-4 day horizon 
dynamics) and scale τ2 (corresponding to a 4-8 day horizon dynamics) stock market 
returns decompositions.

The wavelet cross-correlation estimator was used to analyze comovement and spillover 
transmission between stock market indices on a scale-by-scale basis. The main fi ndings 
of the cross-correlation lead/lag analysis are: i) Comovement between stock market 
returns is a scale-dependent phenomena; ii) There is strong comovement between stock 
market returns of Germany, France, and the UK at all scales, whereas the Austrian stock 
market is less connected to the three biggest stock markets in Europe; iii) Stock market 
return dynamics seem to be well time-synchronized at daily (raw returns), lower (scale  τ1 

and τ2), and mid scales (scales τ4); iv) At the highest investigated scale, τ6, corresponding 
to return dynamics over a 64 to 128 day horizon, we found that the dynamics of the DAX 
and CAC40 returns are the best time-synchronized of all stock indices pairs, whereas 
ATX return dynamics at this scale is the least time-synchronized with the other stock 
indices’ return dynamics. The FTSE100 returns innovations at this scale precede return 
innovations of all other stock indices.
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