
1

PR
A

G
U

E 
EC

O
N

O
M

IC
 P

A
PE

RS
  /

  O
N

L
IN

E
 F

IR
S

T

© UNIVERSITY OF ECONOMICS, PRAGUE

MEASURING YIELDS: ARITHMETIC, 
GEOMETRIC AND HORIZON-CONSISTENT 
AVERAGE

Michal1Dvořák*

Abstract:

The choice of averaging method has considerable impact on the average yield of a  fi nancial 
variable. Usually, geometric average is preferred, though dissenting opinions exist. Here it is shown 
that the problem has a consistent solution, which is called the horizon-consistent average. It is 
shown why geometric and arithmetic average calculations are almost always biased. When using 
company valuation’s most common SP500 dataset by Ibbotson Associates for 1928–2012 and the 
recommended 10-year forecasting horizon, consistent with the 10-year government securities 
in a CAPM model, the arithmetic average is severely fl awed. On the other hand, the geometric 
average for similar horizons does not deviate much from the horizon-consistent average.

Keywords: yield, historical yield, arithmetic average, geometric average, risk premium
JEL Classifi cation: G1, G32 

1. Introduction 

Using this journal as a reference, most analyses of fi nancial instruments return concentrate 
on investigating short-and medium-term performance (Dariusz 2013; Kavker – Festic, 
2011; Trešl – Blatná, 2007; Bemerew, 1999; Trešl, 1999). This does not mean that the 
long-term performance is of lesser importance or free of dispute. In this article, we focus on 
one unresolved aspect in longer-term performance evaluation and forecasting – the proper 
averaging method for yield measurement. 

The choice of averaging method has potentially considerable effect on the value of 
the average yield of a fi nancial instrument. The question is relevant in all situations where 
multi-period yield measurement, benchmarking or forecasting are conducted. This includes 
fi nancial risk management, performance of mutual funds and estimation of cost of equity 
capital, to name a few. The impact of method choice is amplifi ed when longer horizon 
is considered. As company valuation usually expects companies to live over a prolonged 
period of time, the problem is disproportionately signifi cant there. For this reason, this 
problem will be exposed from valuation perspective.

Company valuation employs CAPM-style models to determine the cost of capital. 
Equity premium inside CAPM is defi ned as the difference between a yield of market index 
and a yield of a risk free instrument. To evaluate each of these, geometric average of past 
data is usually preferred, though dissenting opinions exist and the issue is not resolved 
satisfactorily (Mařík et al., 2011, p. 312). Damodaran (2013b) favours geometric average 
on the grounds of negative autocorrelation and forecasting horizon differences, using 
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the conclusions by Indro,  Lee (1997). Nevertheless, the conclusions lack sound theoretical 
backing. 

In this article, we start with an intuitive view of yield measures and develop a general 
procedure that is in accord with this view. The procedure is later referred to as horizon-
consistent average. The solution is inferred under the independence of yields in time, which 
eases the exposition. The procedure can be further modifi ed to account for autocorrelated 
yields. Making it a benchmark, respective biases of arithmetic and geometric average are 
investigated.

As an application, the averages are demonstrated on company valuation’s most 
frequently used dataset of SP500 by Ibbotson Associates for 1928–2012. 

2. How Much Do the Averages Diff er?

It is a well-known mathematical fact that for any given numbers, arithmetic average is 
greater than geometric average.1  There is a single exception; both averages are equal if 
and only if all averaged numbers are identical. The greater is the difference between the 
numbers, the greater is the difference between their averages. Differences between the 
numbers can be measured by their standard deviation. Because stock yields exhibit higher 
standard deviation (in time) than less risky government securities, the difference between 
averages is greater in the case of SP500 stock index than in the cases of Treasury Bonds and 
Treasury Bills. This is shown in Table 1. 

Table 1  |  Comparison of the Diff erences between Arithmetic and Geometric Averages for 

Variously Volatile US Instruments

Volatility 

(standard deviation)

Arithmetic 

average

Geometric 

average

Diff erence 

between averages

SP500 stock index 19.89% 11.26% 9.31% 1.95 p. p.

10-year T-Bonds 7.69% 5.38% 5.11% 0.27 p. p.

3-month T-Bills 3.03% 3.61% 3.57% 0.04 p. p.

Source: Damodaran (2013). Annual data for 1928–2012 period. Geometric average is defi ned by (33).

The difference between averages is rather small for government securities, but for 
stock index it is large enough to have practical consequences. 

3. The Setup

The reason for averaging past data can be either backward looking need to describe past 
development or forward looking need to forecast future movement. Though everything 
stated in the text is valid for both cases2, we will discuss the issue from the forecasting 

1 The proof for 2-number case is straightforward. General proof can be obtained by mathematical 
induction (Veselý, 2004, pp. 30–31). Cauchy’s induction proof together with 4 other proofs is also 
available on the devoted Wikipedia website (http://en.wikipedia.org/wiki/Inequality_of_arithmetic_
and_geometric_means).

2 When looking backwards, N should be called relevant period rather than forecasting horizon.
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perspective in order to be consistent with our valuation application. When estimating yields, 
two characteristics enter the analysis.

• Number of observations (denoted T). It refers to the size of the dataset of past data 
available. In our application to annual yields during the 1928–2012 period we have 
85 observations (T = 85). 

• Forecasting horizon (denoted N). It refers to the horizon for which the average yield is 
forecasted. When N = 1, we forecast an average yield of a fi nancial variable from now 
to 1 period on. When N = 2, we predict an average yield of a fi nancial variable from 
now to two periods on. Average yield is compound annual growth rate of the fi nancial 
variable.3 From technical reasons, forecasting horizon should be in full multiples of the 
frequency of observation; when using annual observations, forecasting horizon should 
be in full years. 4 In the text we assume annual observations.

As the number of observations is a feature of the dataset employed and forecasting 
horizon depends on the specifi c need of the user, these two parameters are independent of 
each other. Thus, N = T, N < T and N > T cases might well occur, though N < T is probably 
the most common situation.

As we shall see later, the relationship between the forecasting horizon and the number 
of observation plays an important role when choosing the averaging method.

Figure 1  |  Histogram of SP500 Annual Yields during 1928–2012

Source: Damodaran (2013). Yield bands reach 2% both ways from the point stated on the horizontal axis, 
except for the leftmost and the rightmost band.

3 For 2-year horizon, it is a rate g, for which I0 . (1 + g) . (1 + g) = I2 , where I0  is today’s value 
of the fi nancial variable and I2 is its value after 2 years.

4 Procedures and conclusions of this article can be extended to horizons which are not full multiples 
of the frequency of observation. Nevertheless, considering such cases – for example, estimating 
weekly yield when using annual data or estimating a yield for 1.384 years – makes little practical 
sense.
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We begin with the distribution of historical yields of the fi nancial variable. In our SP500 
dataset by Ibbotson Associates (Damodaran, 2013), the resulting distribution’s histogram 
is in Figure 1. As mentioned above, our objective is to predict future performance rather 
than to describe the past. The actual future performance is unknown, so we will consider it 
as a random variable, being probabilistically distributed according to the same distribution 
as occurred in the past (as in Figure 1). Thus, we employ past data to form an idea about 
probable yearly movement sizes and their likelihoods. 

Two remarks should be made here. First, if all the past observations are relevant, 
larger number of observations delivers more proper description of the yields probability 
distribution. Oppositely, for example, with only 2 past data (T = 2), the distribution would 
be extremely rough and imprecise for future yield forecasting. 

Second, the above was inferred under the suppositions that (1) all past yields employed 
in the distribution construction came from the same distribution and (2) that this yearly 
distribution remains unchanged for the forecasting period. If market structure has changed, 
yields realized under the old structure might be irrelevant for the new structure. This 
becomes an issue especially when trying to refi ne the yield distribution by extending the 
dataset to the past. Had stock market in 1928–1990 different yield-affecting characteristics 
from today’s market, usage of old data can seriously impair forecasting accuracy instead of 
improving it.  

In the following theoretical exposition is assumed all the data are relevant5. It accord 
with the prevailing valuation practice (Damodaran, 2013b), it is also assumed in our SP500 
application. 

One-period yield distribution. Being the basic building block of the analysis, the 
above-mentioned yield distribution demands formal treatment. Denote one-period yield Y.
From modelling perspective, it is a random variable, distributed according to some 
distribution, called D. Information about distribution D – its possible realizations and their 
respective probability of occurrence – can be derived from past data. For this purpose we 
can resort to the histogram in Figure 1. Nevertheless, the highest precision is obtained when 
all past observations are taken separately. This leads to the discrete probability distribution 
function of (1).  
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where xi denotes the i-th unique value of annual yield out of k observed ti-times in the 
dataset of T values in total, leading to its respective probability of occurrence Pr{xi}. By 
the character of the setup it is very likely that almost all values will be recorded only once, 
leading to ti = 1 and Pr{xi} = 1/T.

Independence assumption. If more periods are considered (in the past or in future), 
more random variables describing yearly changes have to be considered. Label Y1 random 
variable describing fi rst period’s yield, Y2 random variable describing yield in the second 
period, until YT is the random variable describing yield in the last considered period. In line 

5 If this proves not to be realistic, two remedies can be made. Firstly, observations identifi ed to come 
from different market structures can be skipped. Secondly, data can be weighted by relevance, with 
more relevant data receiving higher weight, interpreted as infl ated number of occurrences.
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with the previous, suppose all these random variables share the same above-mentioned 
distribution D. It is then important to ask if they are independent of each other. Independence 
of distributions in time is empirically diffi cult to prove or disprove. Practitioners thus resort 
to testing yields autocorrelation.6 Although past studies (Fama, French, 1988) identifi ed 
negative autocorrelation and some theorists work with autocorrelated yields, the 1928–2012
annual SP500 dataset exhibits autocorrelations very close to zero and statistically 
insignifi cant (see Table 2). Therefore, in our case, serial independence of yields assumption 
is very reasonable. This will substantially simplify the analysis.

Table 2  |  Autocorrelation Coeffi  cients for Annual Yields of SP500

Lag

Autocorrelation 

coeffi  cient (ACF)

Autocorrelation coeffi  cient adjusted 

for interlaying lags (PACF)

Ljung-Box Q statistics

[p-value]

1 0.0013 0.0013 0.0002 [0.990]

2 −0.1391 −0.1391 1.7247 [0.422]

3 0.0099 0.0105 1.7335 [0.630]

4 −0.0858 −0.1073 2.4059 [0.662]

5 −0.0768 −0.0756 2.9516 [0.707]

6 0.0051 −0.0240 2.9540 [0.815]

7 0.1173 0.0996 4.2592 [0.749]

8 0.0261 0.0165 4.3247 [0.827]

9 0.0948 0.1183 5.1994 [0.817]

10 0.0662 0.0697 5.6319 [0.845]

Source: Damodaran (2013). Annual observations for 1928–2012 period. 

4. A Generally Inconsistent Arithmetic-Average Procedure

Let us fi rst present an appealing procedure which is justifi ed when predicting on one horizon 
(N = 1) but turns out to be inconsistent if extended to multi-period forecasting (N > 1).

4.1 Consistent forecast for one period (N = 1) 

One-period forecasting is the following exercise. If the current value of SP500 is, for 
example, 1000, we are interested in the value of SP500 one year later. More precisely, we 
are interested in what is the yield given by such an index development. How to approach 
this problem? Assuming the yield distribution has not changed over time, it’s logical to use 
a value which is “reasonable” in the light of past data. Statistically speaking, one-year yield  
R1 is forecasted by the expected value7 of the annual yield distribution:

6 Independence implies autocorrelation, but not vice versa. If there is no autocorrelation, it might be 
due to independence, or there is a nonlinear relationship. When the independence assumption is 
based on zero autocorrelation, we hypothesize the fi rst option is true. 

7 The possibility to describe the distribution‘s ”center of gravity” differently, for example by the 
distribution’s median, is left aside.
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  1R E Y , (2)

where E{ } is the expectation operator.

The expected value of a random variable defi ned by (1) is

     
1 1

1Pr
k T

i i i
i i

E Y x x x
T 

     . (3)

Thus, it is equivalent to the arithmetic mean. For one-period forecasting, we used the 
arithmetic average of T past values xi (later denoted aA(T) ) and not their geometric average 
(later denoted aG(T)). 

Association of the past data average with the distribution’s mean is enabled by two 
facts. Firstly, expected value of a distribution is defi ned as a weighted arithmetic average 
(if all past data are unique, all weights are equal to 1/T ). Secondly, the distribution is 
constituted by the very same values from which the arithmetic average is calculated. In 
Section 6.2 it is shown that geometric average does not meet the fi rst fact, making such 
association impossible.

4.2 Inconsistent forecast for more-than-one period (N ≥ 2) 

The previous section’s solution was very straightforward. More complicated situation 
occurs when trying to predict yield for more periods. When forecasting for N periods, we 
ask, if today’s value of SP500 is 1000, what it will be after N periods. More precisely, we 
examine the associated compound annual growth rate realized during this N-year period. 

Intuitive solution can be best described in the following way. Consider this 8-step 
procedure. 
1. Set the initial (today’s) value of the fi nancial variable to one, i.e. I0 = 1.
2. Using the probability distribution of the original data (D), randomly draw one value 

from this distribution and apply it to the index. If the randomly drawn value (a particular 
realization of Y1) is called y1, we obtain    0 1 1 11 1I y y I     . We thus obtain the 
index value after one year (I1).

3. Draw another random number from D distribution and chain-apply it on the 
index. If the drawn value (again a particular realization of Y2 ) is y2 , we obtain 

       0 1 2 1 2 21 1 1 1I y y y y I         . This is the index value after 2 years (I2).
4. Continue drawing independent random numbers and applying them to the index in the 

same manner until having reached the total number of N independent draws. Then we 
obtain            0 1 2 1 21 1 ... 1 1 1 ... 1N N NI y y y y y y I               . We thus 
obtain the index value after N years (IN  ).

5. Record the resulting index value after N years – the number IN  . We label it IN,1 to 
explicitly mention it is the fi rst of the many simulated fi nal index values.

6. Repeat steps 2–5 many times or, ideally, pick all permissible combinations of draws. 
The number of such repetitions we call j.

7. Take the arithmetic average of the many resulting index values after  years – numbers  

IN,1 , IN,2   ,…, IN, j . We obtain the number of ,
1

1 j

N N i
i

I I
j 

  .
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8. Take the N-th root of the average index value after N years to obtain compound annual 
growth rate of the index. In other words, annual yield, which delivers the average index 
value in N years. This constitutes the N-year horizon forecast (RN ): 1N

N NR I  .

Now we describe the process algebraically. Index value after N years can be generally 
written as a product of N random variables Yi , all identically distributed with distribution D   
(1) and mutually independent.

      1 21 1 1 ... 1N NI Y Y Y         (4)

The expected value (the arithmetic average) of index values after N years will generally be

         1 21 1 1N NE I E Y Y Y      . (5)

Because the expected value of the index after N years can be calculated as the average of 
all possible combinations of one-year past yields xi , the expression (5) can be sequentially 
simplifi ed to the form of expression (9). 

        1 2
1 21 1 1

1 ... . 1 1 ... 1
N

N

T T T

N i i iN
i i i

E I x x x
T   

            (6)

        2 1
2 1

1
1 1 1

1 1... 1 ... 1 1
N

N

T T T

N i i iN
i i i

E I x x x
TT 

  

 
        

 
    (7)

               1 2 1 11 1 ... 1 1 ... 1N NE I E Y E Y E Y R R             (8)

    11 N
NE I R   (9)

See that to forecast expected value of the index after N years, only the expected value of 
the 1-year yield is needed. The annualized N-year forecast (see step 8 of the procedure) is 

         
1/1/

1 2 11 1 ... 1 1 1 1
NN N

N NR E Y Y Y R               
 (10)

 1NR R . (11)

As N can be any natural number, the forecasts are identical for all horizons and are 
equal to the 1-year forecast. It looks like arithmetic, and not geometric, average is the right 
way to calculate average yields, irrespectively of the forecasting horizon N. This would 
counter the conclusions of Indro, Lee (1997) and recommendations in Damodaran (2013b). 

Nevertheless, the procedure, specifi cally steps 7 and 8, contains a fl aw. This is best 
seen when N = 85. From Table 1 we know the arithmetic average of the SP500 data (aA(85)) 
to be 11.26%. Setting the initial index value I0 = 1, the terminal index value (I85) is:

  85 85
85 0 (85)1 1.1126 8686AI I a     .  (12)

When the initial value is sequentially adjusted for annual yields which materialized 
each year, being the way how the data were acquired, we reach the terminal value (see 
geometric average aG(85) =  9,31% in Table 1)
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        85 85
85 0 1 2 85 (85)1 1 ... 1 1 1.0931 1932GI I x x x a            . (13)

This documents that arithmetic averaging, though apparently correct through equation 
(11), substantially overstates reality; in this case by the factor of almost 4.5! For exhibiting 
this odd behaviour, we call the procedure inconsistent for horizon 85 years. Moreover, this 
was the case of zero autocorrelation. Were negative autocorrelation in place, then 

          1 21 1 ... 1N NE I E Y Y Y        (14)

and the procedure would overshoot reality even more. The overshooting effect of auto-
correlation further magnifi es with the rising intensity of negative autocorrelation.

5. A Consistent Forecasting Procedure

The procedure introduced in Section 4 is imperfect, when forecasting for more periods. 
We then need to fi nd a method which is internally consistent. Internal consistency means 
that the forecast, if compounded over the relevant horizon N, corresponds with the index 
changes that have occurred (or are expected to occur, given the data) during N-year period. 
The consistency requires the forecasts to differ across forecasting horizons (N). A consistent 
procedure for a general horizon is the following. 
1. Construct the annual yield distribution D from T source observations. (The distribution 

is likely to be described by a trivial histogram, in which every unique observation 
occurs with the frequency of 1/T).

2. Set the initial value of the index to be one, i.e.  I0 = 1.
3. Using the annual yield distribution D, randomly draw N independent values 

and apply them to the index. If drawn values are labelled y1, y2 , …, yN, we obtain 
     0 1 21 1 ... 1 N NI y y y I        . Thus, we obtain the terminal value of the index 

after N periods (IN  ). 
4. Take the N-th root of the terminal value of the index after N periods (IN  ) and subtract 

one to obtain compound annual growth rate. In other words, to obtain annual yield b,
which delivers the above-mentioned terminal index value after N periods, i.e.  

 1/ 1N
Nb I  . 

5. Record the annual yield for N periods, the number b. We label it b1 to explicitly mention 
it is the fi rst of many simulated fi nal values.

6. Repeat steps 3–5 infi nite times or, ideally, pick all permissible combinations of draws. 
The number of such repetitions we call j.

7. Take the arithmetic average of individual annual yields for N periods – numbers 
b1, …, bj . The resulting number is the yield forecast for the N-period horizon (RN ): 

1

1 j

N j
i

R b
j 

  .

Algebraically written, the forecast is 

           1/1/
1 21 1 1 ... 1 1

NN
N N NR E B E I E Y Y Y             ,  (15)

where B is a random variable describing possible realizations of  number b from step 4.
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Call this expression the analytical form of the horizon-consistent average for 
N period forecasting. 

Assuming independence of random variables Yi (which also implies zero auto-
correlation), it is possible to simplify (15) to:

 

      
      
           

1/
1 2

1/ 1/ 1/
1 2

1/ 1/ 1/ 1/
1 2

1 1 ... 1

1 1 ... 1

1 1 ... 1 1

N
N

N N N
N

NN N N N
N

E Y Y Y

E Y Y Y

E Y E Y E Y E Y

        

       

         
 

 (16)

Call the expression (17) the computational form of the horizon-consistent average 
for N period forecasting. For brevity, the term horizon-consistent will be shortened to 
consistent in the text below.

   1/1 1
NN

NR E Y   
   (17)

Although the computational form is less instructive in comparison with the analytical form, 
it possesses a fundamental advantage in the ease of calculation. The implementation of 
the analytical form is for longer horizons possible only simulationally. It means in step 8, 
picking all combinations becomes infeasible and we have to resort to the fi rst-mentioned 
option of randomized drawing (and, of course, the phrase infi nite times has to be commuted 
to many times, say, 2,000,000). On the contrary, computational form allows calculating 
exact values of the consistent average for all forecasting horizons in real time and can be 
implemented even in a spreadsheet.

Notice the innovation of the consistent procedure over the previous inconsistent one. 
Both approaches fi rstly simulate terminal values of the index after N periods (IN ), and

• Consistent approach fi rstly takes the roots and subsequently calculates the mean value 
from these many roots. 

• Inconsistent approach fi rstly calculates the mean value of the index and subsequently 
takes the root of it. 

In other words, the consistent approach considers the annual yields in every N-year 
scenario, from which then it takes the mean value. The inconsistent approach calculates 
the key result – the compound annual growth rate – via the mean value of the index after 
N periods and this by-pass inserts a fl aw into the result. 

Are the inconsistent values systematically greater or smaller than the consistent ones 
for some horizons?

The answer lies in Jensen’s inequality.8  It states that for every convex (or concave) 
function g(z) holds    ( ) ( )g E z E g z  (or    ( ) ( )g E z E g z ). Because g(z) = z1/N, 
where x =      1 21 1 ... 1 NY Y Y      , is concave for N > 1, Jensen’s inequality implies:

              1/ 1/
1 2 1 21 1 ... 1 1 1 ... 1

N N
N NE Y Y Y E Y Y Y                  (18)

The inconsistent result (the left-hand side) overshoots the consistent result (the right-hand 
side) for all forecasting horizons longer than one period (i.e. N > 1). For one-year horizon, 

8 The proof is available on http://en.wikipedia.org/wiki/Jensen's_inequality.
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both calculations are equal, as

     1 1
1 11 1E Y E Y      . (19)

In other words, in one-year forecasting there is no difference between taking the expected 
value fi rst and taking its root later, or vice versa, which was the only difference between 
the procedures. As a result, the arithmetic-average procedure presented in Section 4
is equivalent to the consistent procedure for one-year horizon (N = 1).

6. Biases in Arithmetic and Geometric Averages

This section examines if arithmetic and geometric averages generally overstate or understate 
the consistent result presented in Section 5.
6.1 Systematic error when forecasting with arithmetic average 

Because the procedure presented in Section 4 is based on arithmetic average, the direction 
of its bias relative to the consistent average has already been discussed. It stems from the 
following relationships:

 

    

       
      

1/

( )

1/

1 2

1/
1 2

1 1 1

1 1 ... 1

1 1 ... 1

NN
A T

N

N

N
N

a E Y E Y

E Y Y Y

E Y Y Y

       

         

       

 (20)

Forecasts using the arithmetic average (aA(T) ) are always consistent for N = 1 and always 
overstate the consistent forecast for N = 1. The degree of overshooting is given by the 
concavity of the function g(z) = z1/N. Higher N means higher concavity and more serious 
overshooting.  Thus, arithmetic average is most fl awed when forecasting for long horizons.

Another determinant of the overshooting magnitude is the dispersion of the past yields 
in the dataset (xi ’s)9. In the hypothetical case when all past yield are identical, the expression 
(20) holds as equality. But there is little reason for studying averaging mechanisms when 
all values are identical.

6.2 Systematic error when forecasting with geometric average

Now we investigate the systematic bias of the geometric average, relative to the consistent 
average. When calculated from T values, geometric average is defi ned by (28). There are 2 
reasons why it deviates from the consistent average: 

• Different choice of the forecasting horizon;
• Discrepancy between the geometric average of the entire dataset and the expected 

value of sample geometric averages.

9 This can be seen from the expression z in the assumptions of Jensen’s inequality. z is constant if 
and only if all the values are identical (and always the same value y is drawn from the distribution). 
Function g(z) is then defi ned only in one point, which does not satisfy the convexity/concavity 
defi nition and Jensen’s inequality cannot be applied. The greater the differences between the xi data, 
the greater the dispersion of z values. The overshooting of arithmetic is then amplifi ed through the 
prospective concavity of g(z).
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A formal decomposition to both sources of difference can be made as follows. 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )K T G T K T K K T G Ta N a a N a T a T a           , (21)

where aK(T)(.)  is the consistent average for the forecasting horizon in brackets and 
aG(T) is the geometric average. Subscript (T) indicates they are calculated using a dataset of 
T observations.

The term in the fi rst square brackets relates to the error caused by the forecasting 
horizon. The term in the second square brackets relates to the error of association of the 
geometric average with the expected sample average. Let’s investigate both errors in detail. 

Forecasting horizon error. It would be nice to consider geometric average to be 
a special case of a consistent average with a forecasting horizon N = T. In other words, to 
consider that for geometric average aG(T)  holds

 
     

      
1/

( ) 1 2

1/
1 2

1 1 1 ... 1

1 1 ... 1

T
G T T

T
T

a x x x

E Y Y Y

          

        
 (22)

For T = N, the expression (22) becomes (after subtracting 1) identical to the expression 
(15), which describes the consistent result. Thus, for T = N the geometric average equals the 
consistent one. In other cases, the two are not equal. This is caused by the fact the consistent 
average diminishes in forecasting horizon.

Why does the consistent average diminish in N? This can be reformulated to stating 
that the expected value of the geometric average of values randomly drawn from an 
identical distribution decreases in the number of values (draws) subsumed in the average. 
This statement takes the algebraic form of

               1/ 1/ 1
1 2 1 2 11 1 ... 1 1 1 ... 1

N N
N NE Y Y Y E Y Y Y



                      (23)

for all natural N. For N = 1, under the independence assumption the statement is simplifi ed 
to

                21/2 1/2 1/2 1/2
1 1 2 1 1 11 1 1 1 1 1E Y E Y Y E Y E Y E Y                 (24)

Jensen’s inequality applied to z = 1 + Y1 and a concave function g(z) = z1/2 yields

        
2 21/21/2

1 1 11 1 1E Y E Y E Y         
, (25)

which proves the statement for N = 1. Now we show the statement holds for a general N. 
Let’s rearrange the statement (23) to the form similar to (24):

         1
1/ 1/ 11 1

NNN NE Y E Y


         . (26)

Denote z = (1 + Y)1/N. As seen in (27), 

 
            

    

1 11 / 11/ 1 / 1

1/

1

1

N NN N NN N N

NN N

E Y E z E z

E z E Y

                 

       

 (27)
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Jensen’s inequality for a concave function g(z) = zN / (N + 1) places an upper bound on the right-
hand side of the inequality (26), and this upper bound is found to be equal to the left-hand 
side of the inequality (26). This completes the proof. 

The recently proven statement means that the consistent average permanently 
diminishes when the forecasting horizon N increases (until some limit value, as shown 
later). When using the geometric average aG(T) , which is constant and thus independent of 
forecasting horizon N, we implicitly employ a consistent average with a forecasting horizon  
T for all horizons. As (22) shows, the geometric average is equivalent to the consistent 
average only for T = N. The corollary is that for N < T the geometric average is below the 
consistent average and for N  > T it is above the consistent average. 

Error from discrepancy between the geometric average and the expected value. 
Now we return to (22), which assumed the geometric average of actual data equals to the 
expected value of geometric average of random draws from their distribution. The statement 
is, unfortunately, not fully correct. Let us investigate why.  

The geometric average (aG(T) ) of all past realized yields xi is defi ned as:

      ( ) 1 21 1 1 ... 1T
G T Ta x x x        .  (28)

The expected value of the geometric average of T-element independent random selection 
from the distribution described by xi’s is calculated as the arithmetic average form all 
permissible situations:

      
     1 2

1 21/ 1 1 ´ 1
1 2

... 1 1 ... 1
1 1 ... 1

T
T

T T T
T

i i i
T i i i

T T

x x x
E Y Y Y

T
  

     
        

 
  (29)

Besides the scenarios in which the random draw is identical to the actual data, the expected 
value is also affected by scenarios different from the actual data. Due to arithmetic averaging 
of these unrealized scenarios, the expected value is greater than the geometric average of 
the actual data (or equal, provided that all yield data are identical).

Let aside the trivial cases in which all yield data in the dataset are the same (including 
the T = 1 case) and expressions (28) and (29) are thus obviously equal. We will only consider 
the cases with (at least two) different numbers.  For T = 2 the statement means:

   
           

 

(2) 1 2

1 1 1 2 2 2

1 1 1

1 1 2 1 1 1 1
4

Ga x x

x x x x x x

     

          
 

                        
    1/2

1 21 1E Y Y       

(30)

After rearranging, it can be seen the inequality (30) is equivalent to the statement that 
2-element arithmetic average is always greater than 2-element geometric average (again, 
same numbers case left aside). 
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For T > 2 it can be seen the right-hand side of (29) is the T-th power of the arithmetic 
average of numbers ri . After raising the right-hand side of (28) to the power of T, one 
arrives to the T-element proof of the inequality between arithmetic and geometric average 
mentioned in Section 2. This means the expected value is greater than the geometric average 
of actual data. Because consistent approach is based on expected values, the geometric 
average will always understate the consistent average.

The geometric average is closer to the consistent one if the dataset is large (T is large), 
because the error from associating the geometric average with the expected value is reduced 
as the samples become more similar to the actual data10.

Both errors jointly. We have shown that there exist two sources of bias of the 
geometric average from the consistent average: fi rst appears when a different forecasting 
horizon from the number of observations is used (present if N ≠ T, biasing upwards or 
downwards) and second stems from the association of the geometric average with the 
expected value when sampling (always present, biasing downwards). For each T, the sum 
of both biases is removed as N → ∞, because

 
  
     

1/

1/ 1/ 1/
1 2

( )

lim 1

1 1 ... 1
lim

NN
N

NN N N
T

N G T

E Y

Y Y Y
a

T





  
 

      
  

  

 (31)

It means the consistent average converges to the geometric average with infi nite 
forecasting horizon. Put it differently, the geometric average is consistent only for N → ∞. In 
other cases, which include all practical situations, the geometric average always understates 
the consistent value. The magnitude of error diminishes with increasing forecasting horizon. 
Application in Section 8 shows the error magnitude diminishes rather quickly. 

The choice of forecasting horizon matters. The shorter is the horizon, the greater is 
the magnitude of understatement when geometric average is used. Obviously, geometric 
average operates with the largest error when forecasting for one-period (N = 1). In the 
common case of N < T, the error caused by an improper forecasting horizon further 
magnifi es the error caused by the association with the expected value (in (21), both square 
brackets are positive). In the less common case11 of N > T, the horizon error partially 
compensates the expected value association error, until full convergence occurs for N = ∞ 
(i.e. ( ) ( )( )K T G Ta a  ). Summing up, geometric average always understates the consistent 
value; most severely, if the forecasting horizon is short. These theoretical conclusions 
comply with Indro, Lee (1997).

10 The statement is diffi cult to formulate precisely and prove, because as T increases, is not clear, 
where do the additional observations come from. 

11 In company valuation N = 10 is typical. The question then arises if 9 and less data points are 
suffi cient. Damodaran (2013b) objects even to using data from developed markets outside the USA, 
where there are 20–25 annual observations available. His argument goes that standard error of such 
estimation is too large for practical use. Standard error (if data are independent and identically 
distributed; both being assumed in this text) equals standard deviation of the data divided by the 
square root of the number of observations. If the standard deviation is realistically 20%, 9 data 
points deliver 6% standard error. SP500 realistic yield estimate being 9%, with 95% reliability the 
true yield is between −2.76% and 20.76% (normal quantile used). This is hardly usable. 
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7. A Numerical Illustration

Let’s consider a short numerical example to contribute to better understanding of the consistent 
averaging procedure and to demonstrate validity of the previous theoretical results. 
Assume we have annual index yields only for the 2010–2012 period, thus T = 3. These 
yields (Damodaran, 2013) are 14.82% (2010), 2.07% (2011) and 15.83% (2012). 
Arithmetic average. The arithmetic average of these yields is:

(3)
0.1482 0.207 0.1583 0.1091 10.91%

3Aa  
   .

Geometric average. The geometric average of these yields is:

     3
(3) 1 0.1482 1 0.207 1 0.1583 1 0.1072 10.72%Ga         

Consistent average. We will calculate consistent averages using both the analytical form, 
which demonstrates the logic of the construction, and the computational form, which 
demonstrates the relative ease of calculation.  We start with the analytical form.

Consistent average differs by the forecasting horizon considered. Here we calculate it for 
horizons of one, two and three years. For one-year forecasting horizon, i.e. N = 1, there are 
only 3 scenarios of index development. We have only 3 source data available and we expect 
one of them to materialize with equal likelihood. Thus, the consistent average would be 

     1/1 1/1 1/1
(3)

(3)

1 1 1(1) 1 0.1482 1 0.0207 1 0.1583 1
3 3 3

0.1091 10.91%

K

A

a

a

          

  

For two-year forecasting horizon, i.e. N = 2, 9 equally likely index development scenarios 
might occur (see Table 3).

Table 3  |  Two-Year Scenarios for Consistent Average Calculation

Scenario 

number

First year 

yield

Second year 

yield

Terminal index value  

(initial value = 1)

Compound annual 

growth rate

1 2.07% 2.07% 1.0418 2.07%

2 2.07% 14.82% 1.1720 8.26%

3 2.07% 15.83% 1.1823 8.73%

4 14.82% 2.07% 1.1720 8.26%

5 14.82% 14.82% 1.3184 14.82%

6 14.82% 15.83% 1.3300 15.32%

7 15.83% 2.07% 1.1823 8.73%

8 15.83% 14.82% 1.3300 15.32%

9 15.83% 15.83% 1.3417 15.83%

Source: Damodaran (2013).
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Scenarios are combinations of yields occurring in the fi rst and the second year. Each 
combination delivers certain terminal value of the index (which is initially set to one) and 
associated compound annual growth rate. This compound rate equals the geometric average 
of realized annual growth rates. Consistent average is calculated as the arithmetic average 
of these 9 compound growth rates:

         

       

1/2 1/2 1/2 1/2 1/2
(3)

1/2 1/2 1/2 1/2

1 1 1 1 1(2) 1.0418 1.172 1.1823 1.172 1.3184
9 9 9 9 9

1 1 1 11.33 1.1823 1.33 1.3417 1
9 9 9 9
0.0207 0.0826 0.0873 0.0826 0.1482 0.1532 0.0873 0.1532 0.1583 10.82%

9

Ka           

         

       
 

For three-year forecasting horizon, i.e. N = 3 , 27 equally likely index development scenarios 
might occur (see Table 4).

Table 4  |  Three-Year Scenarios for Consistent Average Calculation

Scenario
1st year 

yield

2nd year 

yield

3rd year 

yield

Terminal 

index 

value

CAGR Scenario
1st year 

yield

2nd year 

yield

3rd year 

yield

Terminal 

index 

value

CAGR

1 2.07% 2.07% 2.07% 1.0634 2.07% 15 14.82% 14.82% 15.83% 1.5271 15.16%

2 2.07% 2.07% 14.82% 1.1962 6.15% 16 14.82% 15.83% 2.07% 1.3575 10.72%

3 2.07% 2.07% 15.83% 1.2067 6.46% 17 14.82% 15.83% 14.82% 1.5271 15.16%

4 2.07% 14.82% 2.07% 1.1962 6.15% 18 14.82% 15.83% 15.83% 1.5405 15.49%

5 2.07% 14.82% 14.82% 1.3457 10.40% 19 15.83% 2.07% 2.07% 1.2067 6.46%

6 2.07% 14.82% 15.83% 1.3575 10.72% 20 15.83% 2.07% 14.82% 1.3575 10.72%

7 2.07% 15.83% 2.07% 1.2067 6.46% 21 15.83% 2.07% 15.83% 1.3694 11.05%

8 2.07% 15.83% 14.82% 1.3575 10.72% 22 15.83% 14.82% 2.07% 1.3575 10.72%

9 2.07% 15.83% 15.83% 1.3694 11.05% 23 15.83% 14.82% 14.82% 1.5271 15.16%

10 14.82% 2.07% 2.07% 1.1962 6.15% 24 15.83% 14.82% 15.83% 1.5405 15.49%

11 14.82% 2.07% 14.82% 1.3457 10.40% 25 15.83% 15.83% 2.07% 1.3694 11.05%

12 14.82% 2.07% 15.83% 1.3575 10.72% 26 15.83% 15.83% 14.82% 1.5405 15.49%

13 14.82% 14.82% 2.07% 1.3457 10.40% 27 15.83% 15.83% 15.83% 1.5540 15.83%

14 14.82% 14.82% 14.82% 1.5137 14.82%

Source: Damodaran (2013). Initial index value is 1. CAGR stands for compound annual growth rate. 

The consistent average is then

       1/3 1/3 1/3 1/3
(3)

1 1 1 1(3) 1.0634 1.1962 ... 1.5405 1.1554 1
27 27 27 9

0.0207 0.0615 ... 0.1549 0.1583 10.79%
27

Ka           
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Now we employ the computational form. It has the form 

  1/
( ) ( ) 1

NN
K Ta N E Y  

  ,

where expectations are always taken from only 3 values, because there are only three 
observations available. After evaluating at N, the respective N-period consistent average 
forecasts are delivered.  

     
1

1/1 1/1 1/1
(3)

1 1 1(1) 1 0.1482 1 0.0207 1 0.1583 1 0.1091 10.91%
3 3 3Ka                 

     
2

1/2 1/2 1/2
(3)

1 1 1(2) 1 0.1482 1 0.0207 1 0.1583 1 0.1082 10.82%
3 3 3Ka                 

     
3

1/3 1/3 1/3
(3)

1 1 1(3) 1 0,1482 1 0,0207 1 0,1583 1 0.1079 10.79%
3 3 3Ka               

This simple numerical exercise illustrates that: (1) arithmetic average is greater than 
geometric average, (2) for one-period forecasting horizon the consistent average equals the 
arithmetic one, (3) for more-than-one-period horizon lies the consistent average between 
the arithmetic and geometric averages, (4) as the horizon increases, the consistent average 
converges to the geometric average (though full convergence occurs only asymptotically), 
(5) consistent average can be calculated for arbitrary-long horizon, (6) when the analytical 
form of the consistent average is used, the number of scenarios needed to consider grows 
extremely fast with the forecasting horizon, (7) the analytical form and the computational 
form of the consistent average deliver identical numbers; the computational form only 
being incomparably faster and easier.

8. Application to SP500

In the previous sections it has been shown that except for cases of N = 1 for the arithmetic 
average and N = ∞ for the geometric average, both averages are systematically biased 
against the consistent average. Although the theoretical exposition identifi ed the direction 
of the bias, its magnitudes are generally unclear. Borrowing the valuation example and 
using the forecasting horizon of N = 10 recommended by Damodaran (2013b), we cannot 
decide whether to use the geometric or the arithmetic average. Moreover, we do not know 
the quantitative effect of shifting to the consistent average instead. In this section, we 
address these issues numerically for annual SP500 dataset for 1928–2012 period published 
by Damodaran (2013). This dataset is frequently used by valuation practitioners for future 
yields estimation; for this reason it was selected for our application.   

Three types of average are tested against the consistent average, serving as a benchmark.

 Arithmetic average defi ned by (32);

 Geometric average defi ned by (33);

 Weighted average of arithmetic average and geometric average defi ned by (34), 
proposed by Indro, Lee (1997). It behaves more like arithmetic average when 
the forecasting horizon is small relative to the number of observation. Contrarily, 
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it behaves more like geometric average when the forecasting horizon approaches 
the number of observations.12

 ( )
1

1 T

A T i
i

a x
T 

   (32)

      ( ) 1 21 1 ... 1 1T
G T Ta x x x         (33)

 ( ) ( ) ( )
1( )

1 1W T A T G T
T N Na N a a
T T
 

   
 

 (34)

The dataset lists 85 annual yields (T = 85). Geometric and arithmetic averages are 
constant for all forecasting horizons and correspond with Table 1. Weighted and consistent 
averages are horizon-specifi c. We will consider horizons up to 85 years.13

The result of the analysis is shown in Figure 2. As noted in Section 6, the arithmetic 
average is consistent for one-year forecasting. For longer forecasting horizons it strongly 
deviates from the consistent value. Oppositely, the geometric average converges to the 
consistent average as the forecasting horizon rises. The weighted average linearly connects 
the two. 

Figure 2A demonstrates the geometric average is usually closer to the consistent value 
than the arithmetic average and is also usually closer than the weighted average. Calculation 
of their respective deviations (in absolute terms) for each horizon identifi es the breaking 
horizons. Deviations are shown in Figure 2B.   

By horizon, the preferable methods are these. For N = 1, the arithmetic average and 
the weighted average (being equal by defi nition) are preferred. For N = 2, the weighted 
average is preferred. For longer horizons than 2 years, the geometric average is preferred. 
Finally for N = 83, 84, 85, the weighted average is preferred, as its small upward-shifting 
arithmetic component partially compensates for the improper association of geometric 
average with the sample expected value (the second bias from Section 6.2). In general, 
though, the performance of weighted average is rather disappointing; its weighting scheme 
poorly follows the hyperbolic course of the consistent average (see Figure 2A) and in most 
cases, the geometric average is a far better choice (see Figure 2B). 

The analysis of SP500 delivers two practical conclusions. First, for the recommended 
horizons around 10 years, the geometric average is clearly preferable. Even if we substantially 
deviate from the 10-year forecasting horizon, geometric average will still remain the best 
choice out of the three generally inconsistent averages. 

Second, if we accept the logic of the consistent average, the consistent average is 
preferred for all horizons. The error arising from using the geometric average instead of the 
consistent one is 0.2 percentage points, when forecasting for 10 years. It is not much, but 
still far from being negligible.  

12 Notice that for N = 1 it equals to the arithmetic average (which is consistent in this case) and for 
N = T it equals to the geometric average (which is near-consistent in this case). Nevertheless, the 
weighting scheme is rather intuitive than mathematically-founded.  

13 The weighted average is not reasonably defi ned for horizons exceeding the total data span. For 
other averages, the conclusions for horizons over 85 years can be easily inferred from the analysis 
presented here.
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Figure 2  |  Comparison of Averages Depending on the Forecasting Horizon

Source: Damodaran (2013).

9. Conclusion

The choice of averaging mechanism has a considerable effect on the resulting value of the 
average past yield or the yield forecast. A consistent solution was proposed here and was 
called the horizon-consistent average. 

Its fi rst step is determining the forecasting horizon for yield forecasts (or the relevant 
period for past yield measurement). On this horizon, all possible combinations of one-
period developments that occurred in the dataset are simulated and a geometric average 
yield is calculated for each scenario. Finally, the horizon-consistent yield is taken as a mean 
value (arithmetic average) of these yields. It should be mentioned that even with the same 
dataset of, the horizon-consistent yield differs with different forecasting horizons.

Using this horizon-consistent average as a benchmark, it is possible to discuss biases 
in arithmetic and geometric averages. For one-year horizon, the arithmetic average equals 

A

B 2.5

2

1.5

1

0.5

0

Absolute 
distance from 
the consistent 

average 
(percentage 

points)

Annual yield 
(compound 

annual 
growth rate) 

(Rn)

12.0 %

11.5 %

11.0 %

10.5 %

10.5 %

9.5 %

9.0 %

Forecasting horizon in years (N)

Forecasting horizon in years (N)

1    5    9   13  17  21  25  29  33  37  41  45  49  53  57  61  65  69  73  77  81  85

1    5    9   13  17  21  25  29  33  37  41  45  49  53  57  61  65  69  73  77  81  85
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the consistent average. For infi nite horizon, the geometric average equals the consistent 
average. For interlaying horizons, the arithmetic average overstates and the geometric 
average understates the consistent value.

The application to Ibbotson Associates data for SP500 showed that when estimating 
the CAPM model and considering the recommended 10-year forecasting horizon to match 
the average duration of equity and the 10-year risk-free rate (Damodaran, 2008), the 
geometric average is much closer to the consistent average. For the 1928–2012 annual data, 
the difference constitutes only 0.2 percentage points, while arithmetic average deviates 
from the consistent solution by 1.75 percentage points. 

In the article, the source data were assumed to be perfect (i.e. non-stochastic). Though 
the preference of the horizon-consistent average might be questioned when stochastic data 
are assumed and further investigation of such case is welcome, the horizon-consistent 
averaging procedure is benefi cial in discussing yield measurement and explaining the 
differences between arithmetic and geometric averages.  
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