Acta Informatica Pragensia Vol. 7 No. 1

Přehled přístupů k vyhodnocování inteligence umělých systémů

DOI: https://doi.org/10.18267/j.aip.115

[plný text (PDF)]

Ondřej Vadinský

Obecná umělá inteligence usiluje o vytvoření umělých systémů schopných řešit mnoho různých, a to i během vývoje nepředvídaných, úloh, což takové systémy činí svou inteligencí srovnatelné s lidmi. To však vyžaduje existenci vhodných metod vyhodnocujících, zda a nakolik jsou umělé systémy inteligentní. Tento přehledový článek hledá právě takové evaluační metody. Provádí proto rozsáhlou rešerši literatury pokrývající jak filosofické a kognitivní předpoklady inteligence, tak i formální definice a praktické testy vycházející z algoritmické teorie informace. Na základě porovnání představených metod článek odhaluje dvě rozdílné skupiny přístupů založené na principiálně odlišných předpokladech. Zatímco starší přístupy, jako např. Turingův test, jsou založeny na předpokladu, že úspěch v komplexní činnosti je postačující pro přiznání inteligence, nové přístupy, jako např. test algoritmického IQ, kromě toho vyžadují i důkladné ověření úspěšnosti v jednoduchých činnostech. V důsledku tohoto zjištění článek dochází k závěru, že test algoritmického IQ založený na definici univerzální inteligence je v současné době nejlepším kandidátem na vhodný prakticky proveditelný test obecné inteligence umělých systémů. Ačkoliv i tento test má několik známých limitů.

Reference:
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind. Psychological Review, 111(4), 1036–1060. doi: 10.1037/0033-295x.111.4.1036.

Besold, T., Hernández-Orallo, J., & Schmid, U. (2015). Can machine intelligence be measured in the same way as human intelligence? KI – Künstliche Intelligenz, 29(3), 291–297. doi: 10.1007/s13218-015-0361-4.

Bickle, J. (2016). Multiple realizability. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Stanford: Metaphysics Research Lab, Stanford University. Retrieved November, 20, 2017, from https://plato.stanford.edu/archives/spr2016/entries/multiple-realizability/.

Bringsjord, S. & Schimanski, B. (2003). What is artificial intelligence? psychometric AI as an answer. In Gottlob, G. (Ed.), Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI’03), (pp. 887–893). Acapulco: IJCAI.

Burge, T. (1979). Individualism and the mental. Midwest Studies in Philosophy, 4(1), 73–121. doi: 10.1111/j.1475-4975.1979.tb00374.x.

Cattell, R. B. (1987). Intelligence: Its structure, growth, and action. New York: Elsevier.

de Mey, M. (1992). The cognitive paradigm. Chicago and London: University of Chicago Press. doi: 10.1007/978-94-009-7956-7.

Dennett, D. C. (1980). The milk of human intentionality. Behavioral and Brain Sciences, (3), 428–430. doi: 10.1017/S0140525X0000580X.

Descartes, R. (1637), [1992]. Rozprava o metodě. Praha: Svoboda.

Dowe, D. L. & Hájek, A. R. (1998). A non-behavioural, computational extension to the Turing test. In Selvaraj, H. & Verma, B. (Eds.), Proceedings of International Conference on Computational Intelligence & Multimedia Applications (ICCIMA’98), Gippsland, Australia, (pp. 101–106). Singapore: World Scientific.

Gardner, H. (1983). Frames of mind: Theory of multiple intelligences. New York: Basic Books.

Goertzel, B. (2010). Toward a formal characterization of real-world general intelligence. In Baum, E., Hutter, M., & Kitzelmann, E. (Eds.), Proceedings of the 3rd International Conference on

Artificial General Intelligence (AGI 2010), Lugano, Switzerland, (pp. 19–24). Amsterdam-Beijing-Paris: Atlantis Press. doi: 10.2991/agi.2010.17.

Goertzel, B. (2014). Artificial general intelligence: Concept, state of the art, and future prospects. Journal of Artificial General Intelligence, 5(1), 1–48. doi: 10.2478/jagi-2014-0001.

Harnad, S. (1991). Other bodies, other minds: A machine incarnation of an old philosophical problem. Minds and Machines, 1(1), 43–54. doi: 10.1007/BF00360578.

Havel, I. M. (2001). Přirozené a umělé myšlení jako filozofický problém. In V. Mařík, O. Štěpánková, & J. Lažanský (Eds.), Umělá inteligence 3 (pp. 17–75). Praha: Academia.

Hernández-Orallo, J. (2000). Beyond the Turing test. Journal of Logic, Language and Information, 9(4), 447–466. doi: 10.1023/A:1008367325700.

Hernández-Orallo, J. (2010). A (hopefully) unbiased universal environment class for measuring intelligence of biological and artificial systems. In Baum, E., Hutter, M., & Kitzelmann, E. (Eds.), Proceedings of the 3rd International Conference on Artificial General Intelligence (AGI 2010), Lugano, Switzerland, (pp. 182–183). Amsterdam-Beijing-Paris: Atlantis Press. doi: 10.2991/agi.2010.18.

Hernández-Orallo, J. (2015). C-tests revisited: Back and forth with complexity. In Bieger, J., Goertzel, B., & Potapov, A. (Eds.), Proceedings of the 8th International Conference on Artificial General Intelligence (AGI 2015), Berlin, Germany, (pp. 272–282). Berlin: Springer. doi: 10.1007/978-3-319-21365-1_28.

Hernández-Orallo, J. (2017). The measure of all minds. Cambridge: Cambridge University Press. doi: 10.1017/9781316594179.

Hernández-Orallo, J. & Dowe, D. L. (2010). Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence, 174(18), 1508–1539. doi: 10.1016/j.artint.2010.09.006.

Hibbard, B. (2009). Bias and no free lunch in formal measures of intelligence. Journal of Artificial General Intelligence, 1(1), 54–61. doi: 10.2478/v10229-011-0004-6.

Hutter, M. (2007). Universal algorithmic intelligence: A mathematical top→down approach. In B. Goertzel & C. Pennachin (Eds.), Artificial General Intelligence (pp. 227–290). Berlin: Springer. doi: 10.1007/978-3-540-68677-4_8.

Hutter, M. (2012). One decade of universal artificial intelligence. In P. Wang & B. Goertzel (Eds.), Theoretical Foundations of Artificial General Intelligence (pp. 67–88). Paris: Atlantis Press. doi: 10.2991/978-94-91216-62-6_5.

Hutter, M. & Legg, S. (2007). Temporal difference updating without a learning rate. In Platt, J. C.,

Koller, D., Singer, Y., & Roweis, S. T. (Eds.), Proceedings of the 21st Annual Conference on Advances in Neural Information Processing Systems (NIPS 2007), Vancouver, Canada, (pp. 705–712). New York: Curran Associates, Inc.

Hyslop, A. (2014). Other minds. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Stanford: Metaphysics Research Lab, Stanford University. Retrieved November, 20, 2017, from http://plato.stanford.edu/archives/spr2014/entries/other-minds/.

Insa-Cabrera, J., Dowe, D. L., España-Cubillo, S., Hernández-Lloreda, M. V., & Hernández-Orallo, J. (2011). Comparing humans and AI agents. In Schmidhuber, J.,

Thórisson, K. R., & Looks, M. (Eds.), Proceedings of the 4th International Conference on Artificial General Intelligence (AGI 2011), Mountain View, USA, (pp. 122–132). Berlin: Springer. doi: 10.1007/978-3-642-22887-2_13.

Kolmogorov, A. N. (1963). On tables of random numbers. Sankhyā: The Indian Journal of Statistics, Series A, 4(25), 369–376. doi: 10.1016/S0304-3975(98)00075-9.

Kripke, S. A. (1972). Naming and necessity. Cambridge: Harvard University Press.

Legg, S. & Hutter, M. (2007a). A collection of definitions of intelligence. In B. Goertzel & P. Wang (Eds.), Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms (pp. 17–24). Amsterdam: IOS Press.

Legg, S. & Hutter, M. (2007b). Universal intelligence: A definition of machine intelligence. Minds and Machines, 17(4), 391–444. doi: 10.1007/s11023-007-9079-x.

Legg, S. & Veness, J. (2011). AIQ: Algorithmic intelligence quotient [source codes]. Retrieved June, 26, 2017, from https://github.com/mathemajician/AIQ.

Legg, S. & Veness, J. (2013). An approximation of the universal intelligence measure. In D. L. Dowe (Ed.), Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelligence (pp. 236–249). Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-44958-1_18.

Levin, J. (2017). Functionalism. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy.

Stanford: Metaphysics Research Lab, Stanford University. Retrieved November, 20, 2017, from https://plato.stanford.edu/archives/win2017/entries/functionalism/.

Levy, D. & Newborn, M. (1991). How computers play chess. New York: Computer Science Press. doi: 10.1007/978-3-642-85538-2_2.

Minsky, M. (1974). A framework for representing knowledge. Technical report. Retrieved November, 20, 2017, from http://web.media.mit.edu/~minsky/papers/Frames/frames.html.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533. doi: 10.1038/nature14236.

Müller, U. (1993). dev/lang/brainfuck-2.lha in Aminet. Retrieved June, 26, 2017, from http://aminet.net/package.php?package=dev/lang/brainfuck-2.lha.

Piaget, J. (1936). Origins of intelligence in the child. London: Routledge & Kegan Paul.

Putnam, H. (1975). Mind, language and reality, chapter The Meaning of ‘Meaning’, (pp. 215–271). Cambridge: Cambridge University Press.

Rescorla, M. (2017). The computational theory of mind. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Stanford: Metaphysics Research Lab, Stanford University. Retrieved November, 20, 2017, from https://plato.stanford.edu/archives/spr2017/entries/computational-mind/.

Schweizer, P. (2012). The externalist foundations of a truly total Turing test. Minds and Machines, 22(3), 191–212. doi: 10.1007/s11023-012-9272-4.

Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, (3), 417–457. doi: 10.1017/S0140525X00005756.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., & Hassabis, D. (2017). Mastering chess and shogi by self-play with a general reinforcement learning algorithm.

Solomonoff, R. J. (1964a). A formal theory of inductive inference, part 1. Information and Control, 7(1), 1–22. doi: 10.1016/S0019-9958(64)90131-7.

Solomonoff, R. J. (1964b). A formal theory of inductive inference, part 2. Information and Control, 7(2), 224–254. doi: 10.1016/S0019-9958(64)90131-7.

Spearman, C. E. (1927). The abilities of man, their nature and measurement. New York: Macmillan.

Sternberg, R. J. (1984). Beyond IQ: A triarchic theory of human intelligence. Cambridge: Cambridge University Press.

Sun, R. (2007). The importance of cognitive architectures: An analysis based on CLARION. Journal of Experimental & Theoretical Artificial Intelligence, 19(2), 159–193. doi: 10.1080/09528130701191560.

Sutton, R. S. & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge: MIT Press. doi: 10.1016/S0925-2312(00)00324-6.

Thomsen, K. (2013). The cerebellum in the Ouroboros model, the “interpolator hypothesis”. In Shimizu, S. & Bossomaier, T. (Eds.), Proceedings of the 5th International Conference on Advanced Cognitive Technologies and Applications (COGNITIVE 2013), Valencia, Spain, (pp. 37–41). Wilmington: IARIA.

Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 2(42), 230–265.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236), 433–460.

Tvrdý, F. (2014). Turingův test: Filozofické aspekty umělé inteligence. Praha: Togga.

Veness, J., Ng, K. S., Hutter, M., Uther, W., & Silver, D. (2011). A Monte Carlo AIXI approximation. Journal of Artificial Intelligence Research, 40(1), 95–142. doi: 10.1613/jair.3125.

Watkins, C. (1989). Learning from delayed rewards. PhD thesis, University of Cambridge, Kings College, Cambridge.